JIA-BIN WANG, HAI-ZHU WANG, WEI-CHAO LIU, et al. Three-step Epitaxial Growth of GaAs on Si by MOCVD echnology. [J]. Chinese journal of luminescence, 2022, 43(2): 153-160.
DOI:
JIA-BIN WANG, HAI-ZHU WANG, WEI-CHAO LIU, et al. Three-step Epitaxial Growth of GaAs on Si by MOCVD echnology. [J]. Chinese journal of luminescence, 2022, 43(2): 153-160. DOI: 10.37188/CJL.20210378.
Three-step Epitaxial Growth of GaAs on Si by MOCVD echnology增强出版
Epitaxial growth of high-quality gallium arsenide(GaAs) films on silicon(Si) is the key factor to realize the monolithic integration of silicon-based light sources. However
the large lattice mismatch and thermal mismatch between Si and GaAs have a serious impact on the quality of GaAs films obtained by epitaxial growth. The growth of GaAs on Si was studied by metal-organic chemical vapor deposition(MOCVD). In this paper
the three-step growth method was used to further reduce the surface roughness and threading dislocation density of GaAs on Si by combining low temperature GaAs nucleation layer
high temperature GaAs layer and thermal cycle annealing. And the changes of residual stress in samples grown by different methods were tracked by X-ray diffraction(XRD)
ω
-2
θ
scan. Finally
when the growth time of GaAs low-temperature nucleation layer was 62 min (the growth thickness was about 25 nm)
the full width at half maximum(FWHM) of GaAs epitaxial material exhibiting tensile stress with GaAs(004) rocking curve measured by XRD was 401″
threading dislocation density was 6.8×10
7
cm
-2
and surface roughness over 5 μm×5 μm scan areas of 6.71 nm was obtained by means of three-step growth and cyclic annealing.
关键词
金属有机化学气相沉积砷化镓硅异质外延
Keywords
metal-organic chemical vapor depositionGaAsSiheteroepitaxy
references
AGRELL E, KARLSSON M, CHRAPLYVY A R, et al. Roadmap of optical communications[J]. J. Opt., 2016, 18(6):063002-1-40.
ZHOU Z P, YANG F H, CHEN R X, et al. Silicon photonics—a converging point of microelectronics and optoelectronics[J]. Micro/Nano Electron. Intell. Manuf., 2019, 1(3):4-15. (in Chinese)
ALESHKIN V Y, BAIDUS N V, DUBINOV A A, et al. Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si(001) substrate[J]. Appl. Phys. Lett., 2016, 109(6):061111-1-5.
NORMAN J, KENNEDY M J, SELVIDGE J, et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si[J]. Opt. Express, 2017, 25(4):3927-3934.
CHEN S M, LI W, WU J, et al. Electrically pumped continuous-wave Ⅲ-Ⅴ quantum dot lasers on silicon[J]. Nat. Photon., 2016, 10(5):307-311.
SHANG C, WAN Y T, NORMAN J C, et al. Low-threshold epitaxially grown 1.3-μm InAs quantum dot lasers on patterned (001) Si[J]. IEEE J. Sel. Top. Quant., 2019, 25(6):1-7.
HUANG B J, ZHANG Z, ZHANG Z Y, et al. Research progress on monolithic integration of silicon based optoelectronics with microelectronics[J]. Micro Nano Electron. Intell. Manuf., 2019, 1(3):55-67. (in Chinese)
HU H Y, WANG J, CHENG Z, et al. Influences of ultrathin amorphous buffer layers on GaAs/Si grown by metal-organic chemical vapor deposition[J]. Appl. Phys. A, 2018, 124(4):296-1-7.
王霆, 张建军, LIU H Y. 硅基Ⅲ-Ⅴ族量子点激光器的发展现状和前景[J]. 物理学报, 2015, 64(20):204209-1-8.
WANG T, ZHANG J J, LIU H Y. Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect[J]. Acta Phys. Sinica, 2015, 64(20):204209-1-8. (in Chinese)
WANG Y F, WANG Q, JIA Z G, et al. Three-step growth of metamorphic GaAs on Si(001) by low-pressure metal organic chemical vapor deposition[J]. J. Vac. Sci. Technol. B, 2013, 31(5):051211-1-5.
LIUG Z, XU B, YE X L, et al. Four-step method for growing high-quality GaAs films on Si substrate by molecular beam epitaxy[J]. J. Inorg. Mater., 2016, 31(11):1263-1268. (in English)
EGAWA T, HASEGAWA Y, JIMBO T, et al. Effects of dislocation and stress on characteristics of GaAs-based laser grown on Si by metalorganic chemical vapor deposition[J]. Jpn. J. Appl. Phys., 1992, 31(3R):791-797.
SOGA T, HATTORI S, SAKAI S, et al. Epitaxial growth and material properties of GaAs on Si grown by MOCVD[J]. J. Cryst. Growth, 1986, 77(1-3):498-502.
EL-MASRY N A, TARN J C, KARAM N H. Interactions of dislocations in GaAs grown on Si substrates with InGaAs-aAsP strained layered superlattices[J]. J. Appl. Phys., 1988, 64(7):3672-3677.
SHARAN S, NARAYAN J, FAN J C C. Dislocation density reduction in GaAs epilayers on Si using strained layer superlattices[J]. MRS Online Proc. Lib., 1989, 160(1):375-381.
HU H Y, WANG J, HE Y R, et al. Modified dislocation filter method:toward growth of GaAs on Si by metal organic chemical vapor deposition[J]. Appl. Phys. A, 2016, 122(6):588-1-7.
HSU C W, CHEN Y F, SU Y K. Nanoepitaxy of GaAs on a Si (001) substrate using a round-hole nanopatterned SiO2 mask[J]. Nanotechnology, 2012, 23(49):495306-1-6.
LI Q, NG K W, LAU K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon[J]. Appl. Phys. Lett., 2015, 106(7):072105-1-4.
GROENERT M E, LEITZ C W, PITERA A J, et al. Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers[J]. J. Appl. Phys., 2003, 93(1):362-367.
BALLABIO A, BIETTI S, SCACCABAROZZI A, et al. GaAs epilayers grown on patterned (001) silicon substrates via suspended Ge layers[J]. Sci. Rep., 2019, 9(1):17529-1-8.
BOLKHOVITYANOV Y B, PCHELYAKOV O P. GaAs epitaxy on Si substrates:modern status of research and engineering[J]. Phys. Usp., 2008, 51(5):437-456.
AYERS J E. The Measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction[J]. J. Cryst. Growth, 1994, 135(1-2):71-77.
FARRELL S, RAO M V, BRILL G, et al. Effect of cycle annealing parameters on dislocation density reduction for HgCdTe on Si[J]. J. Electron. Mater., 2011, 40(8):1727-1732.
TANG Y W, XIONG C B, WANG J B. Stress modulation of GaN based LED thin film chip on Silicon substrate[J]. Chin. J. Lumin., 2016, 37(8):979-983. (in Chinese)
ZAMIR S, MEYLER B, SALZMAN J. Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy[J]. Appl. Phys. Lett., 2001, 78(3):288-290.