1.吉林化工学院 分析测试中心,吉林 吉林 132022
2.吉林大学 化学学院,吉林 长春 130012
3.东北电力大学 能源与动力工程学院,吉林 吉林 132012
扫 描 看 全 文
Jie CHEN, Yi-xin GAO, Chao WANG, et al. Preparation and Polychromatic Upconversion Luminescence of Hexagonal NaErF4 and NaErF4@NaYF4 Core-shell Particles. [J]. Chinese Journal of Luminescence 43(2):209-217(2022)
Jie CHEN, Yi-xin GAO, Chao WANG, et al. Preparation and Polychromatic Upconversion Luminescence of Hexagonal NaErF4 and NaErF4@NaYF4 Core-shell Particles. [J]. Chinese Journal of Luminescence 43(2):209-217(2022) DOI: 10.37188/CJL.20210373.
采用简单的水热法合成了六角柱形NaErF,4,和NaErF,4,@NaYF,4,核壳上转换发光材料,利用扫描电镜(SEM)、X射线粉末衍射(XRD)和荧光光谱(PL)等表征对材料的形貌、结构和上转换发光性能进行了研究。结果表明,纯NaErF,4,样品为六角柱形,边长和厚度均为1 μm左右,样品表面光滑。随着NaYF,4,壳层的包覆,六角相NaErF,4,周围出现了大量的立方相NaYF,4,纳米颗粒,得到了NaErF,4,@NaYF,4,核壳结构。荧光光谱表明,通过在六角柱形NaErF,4,表面包覆NaYF,4,壳层,可以有效增强上转换发光强度,其中,位于527,543,663 nm处的3个发射峰分别对应于Er,3+,的,2,H,11/2,→,4,I,15/2,、,4,S,3/2,→,4,I,15/2,和,4,F,9/2,→,4,I,15/2,能级跃迁。随着壳层中Y∶F比例的增加,立方相NaYF,4,的晶体衍射峰逐渐增强;同时,对应的NaErF,4,@NaYF,4,样品发射光谱中红绿比(,R/G,)逐渐增大,发光颜色也从绿色、经黄绿色逐渐向黄色过渡,实现了多色发光。
Hexagonal NaErF,4, and NaErF,4,@NaYF,4, core-shell upconversion luminescent materials were synthesized by simple hydrothermal method. The morphology, structure and upconversion luminescence properties of the obtained materials were studied by scanning electron microscopy(SEM), X-ray powder diffraction(XRD) and fluorescence spectroscopy(PL). The results show that the pure NaErF,4, sample has hexagonal column morphology with smooth surface, and the side length and thickness are both 1 μm. With the coating of NaYF,4, shell, a large number of cubic NaYF,4, nanoparticles appeared around hexagonal NaYF,4, particles, and the NaErF,4,@NaYF,4, core-shell materials were obtained. The luminescence spectra show that the upconversion luminescence intensity can be effectively enhanced by coating NaYF,4, shell on the surface of hexagonal NaErF,4,. The three emission peaks at 527, 543, 663 nm correspond to ,2,H,11/2,→,4,I,15/2,4,S,3/2,→,4,I,15/2, and ,4,F,9/2,→,4,I,15/2, energy level transitions of Er,3+, respectively. Meanwhile, with the increase of the molar ratio of Y∶F in the shell of NaErF,4,@NaYF,4, sample, the crystal diffraction peak of cubic NaYF,4, increases gradually, moreover, the red green ratio(,R/G,) gradually increases in the emission spectrum of the sample, and the luminescence color gradually transits from green to yellow, realizing multi-color luminescence.
上转换荧光NaErF4@NaYF4;红绿比六角柱
upconversion luminescenceNaErF4@NaYF4red green ratiohexagonal column
XU F Y, ZHAO Y M, HU M, et al. Lanthanide-doped core-shell nanoparticles as a multimodality platform for imaging and photodynamic therapy[J]. Chem. Commun., 2018, 54(68):9525-9528.
PANIKAR S S, RAMÍREZ-GARCÍA G, VALLEJO-CARDONA A A, et al. Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF4∶Yb,Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer[J]. Nanoscale, 2019, 11(43):20598-20613.
XU F, SUN Y, GAO H P, et al. High-performance perovskite solar cells based on NaCsWO3@NaYF4@NaYF4∶Yb, Er upconversion nanoparticles[J]. ACS Appl. Mater. Interfaces, 2021, 13(2):2674-2684.
YANG P, SUN X F, WANG S H, et al. Synthesis of Cit-NaYF4∶Yb,Tm@phenolic formaldehyde resin (PFR)@Au composites as an optical sensor for the detection of Cu(Ⅱ) ions[J]. Opt. Mater., 2020, 109:110326.
KOWALIK P, KAMIŃSKA I, FRONC K, et al. The ROS-generating photosensitizer-free NaYF4∶Yb,Tm@SiO2 upconverting nanoparticles for photodynamic therapy application[J]. Nanotechnology, 2021, 32(47):475101-1-9.
李子娟, 安雪, 牛昊, 等. 高温溶剂热分解法合成NaYF4∶Yb3+,Er3+纳米粒子及其光谱特性[J]. 发光学报, 2020, 41(9):1128-1136.
LI Z J, AN X, NIU H, et al. Synthesis and spectral properties of NaYF4∶Yb3+,Er3+ nanoparticles via thermolysis method[J]. Chin. J. Lumin., 2020, 41(9):1128-1136. (in Chinese)
SUN L Y, GAO R Y, PAN T T, et al. Concentration-regulated photon upconversion and quenching in NaYF4∶Yb3+,Er3+ nanocrystals:nonexponentiality revisited[J]. Nanoscale, 2019, 11(39):18150-18158.
SMARA Z, CHEROURA Y, BOYER D, et al. Energy transfer and luminescent properties of Eu3+,Tb3+,Eu3+-Yb3+ and Tb3+-Yb3+ doped α-NaYF4 nanophosphors prepared by coprecipitation route[J]. Opt. Mater., 2020, 104:109932-1-11.
BASAVAPOORNIMA C, LINGANNA K, KESAVULU C R, et al. Spectroscopic and pump power dependent upconversion studies of Er3+-doped lead phosphate glasses for photonic applications[J]. J. Alloys Compd., 2017, 699:959-968.
TANG H, XU Y, CHENG X H. Effect of Cr3+ and alkaline-earth metal ions co-doping on the enhancement of upconversion luminescence in β-NaYF4∶Yb3+/Er3+ microparticles[J]. Mater. Sci. Eng. B, 2020, 261:114658-1-8.
HOMANN C, KRUKEWITT L, FRENZEL F, et al. NaYF4∶Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield[J]. Angew. Chem. Int. Ed., 2018, 57(28):8765-8769.
相国涛, 刘小桐, 夏清, 等. β-NaYF4∶Yb3+/Er3+@β-NaYF4∶Yb3+的上转换发光特性[J]. 发光学报, 2020, 41(6):679-683.
XIANG G T, LIU X T, XIA Q, et al. Upconversion luminescence properties of β-NaYF4∶Yb3+/Er3+@β-NaYF4∶Yb3+[J]. Chin. J. Lumin., 2020, 41(6):679-683. (in Chinese)
CHEN Q S, XIE X J, HUANG B L, et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping[J]. Angew. Chem. Int. Ed., 2017, 56(26):7605-7609.
ZUO J, LI Q Q, XUE B, et al. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure[J]. Nanoscale, 2017, 9(23):7941-7946.
JOHNSON N J J, HE S, DIAO S, et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals[J]. J. Am. Chem. Soc., 2017, 139(8):3275-3282.
LU K L, Yi Y X, XU L, et al. Temperature-independent lifetime and thermometer operated in a biological window of upconverting NaErF4 nanocrystals[J]. Nanomaterials, 2020, 10(1):24-1-12.
LIU Y F, GUO C L, PAN G C, et al. Highly efficient upconversion single red emission of hollow cubic α-NaErF4 nanoparticles by Mn/Yb heavy doping[J]. J. Lumin., 2020, 228:117637.
ZHANG Y Y, MEI L F, LIU H K, et al. Spectroscopic and pump power dependent color-tunable upconversion studies of Yb3+/Er3+ -doped Sr2ScF7[J]. J. Lumin., 2017, 192:385-387.
BORODZIUK A, BARANOWSKI M, WOJCIECHOWSKI T, et al. Excitation efficiency determines the upconversion luminescence intensity of β-NaYF4∶Er3+,Yb3+ nanoparticles in magnetic fields up to 70 T[J]. Nanoscale, 2020, 12(39):20300-20307.
PAN T T, SUN L Y, GAO R Y, et al. Efficient modulation of upconversion luminescence in NaErF4-based core-shell nanocrystals[J]. New J. Chem., 2020, 44(22):9153-9157.
JU D D, GAO X L, ZHANG S C, et al. Temperature-dependent upconversion luminescence multicolor tuning and temperature sensing of multifunctional β-NaYF4∶Yb/Er@β-NaYF4∶Yb/Tm microcrystals[J]. CrystEngComm, 2021, 23(21):3892-3900.
HE E J, YU J J, WANG C, et al. Upconversion luminescence quenching mechanism of single Au nanoparticles decorated NaYF4∶Yb3+,Er3+ hexagonal disk[J]. Mater. Res. Bull., 2020, 121:110613-1-9.
ZHANG J, CHEN J J, ZHANG Y N, et al. Yb3+/Tm3+ and Yb3+/Ho3+ doped NaY9(SiO4)6O2 phosphors:upconversion luminescence processes, temperature-dependent emission spectra and optical temperature-sensing properties[J]. J. Alloys Compd., 2021, 860:158473-1-8.
AN J X, ZHANG S, LIU R W, et al. Luminescent properties of Dy3+/Eu3+ doped fluorescent glass for white LED based on oxyfluoride matrix[J]. J. Rare Earths, 2021, 39(1):26-32.
0
Views
71
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution