浏览全部资源
扫码关注微信
1.福建农林大学金山学院,福建 福州 350002
2.福建农林大学,福建 福州 350002
3.重庆海关技术中心,重庆 401147
[ "梁倩(1984-),女,河北石家庄人,博士,讲师,2020年于福建农林大学获得博士学位,主要从事碳量子点荧光材料合成及传感的研究。E-mail: lqfafu@163.com" ]
[ "黄彪(1966-),男,福建古田县人,博士,教授,博士生导师,2004年于南京林业大学获得博士学位,主要从事生物质化学工程、生物质材料与能源等领域的研究。E-mail: bhuang@fafu.edu.cn" ]
Published:2022-03,
Received:29 November 2021,
Revised:24 December 2021,
移动端阅览
QIAN LIANG, YU-LIN WANG, MEI-QIN ZHENG, et al. Sensitive Detection of Captopril Based on “Off-On” Carbon Dots as Fluorescent Probe. [J]. 发光学报, 2022, 43(3): 430-439.
QIAN LIANG, YU-LIN WANG, MEI-QIN ZHENG, et al. Sensitive Detection of Captopril Based on “Off-On” Carbon Dots as Fluorescent Probe. [J]. 发光学报, 2022, 43(3): 430-439. DOI: 10.37188/CJL.20210372.
以柠檬汁和尿素为原料,通过一步简单的微波热解制得了含氮荧光碳点(NCDs). 所得碳点发蓝色荧光,量子产率高达53.1%. Hg
2+
可以与NCDs表面基团络合形成非荧光的稳定化合物,导致荧光猝灭. 通过荧光猝灭与寿命的关系和紫外-可见光谱的变化情况得出猝灭应属静态猝灭. 另外,卡托普利的加入可以使NCDs荧光得以恢复,这是因为Hg
2+
与卡托普利的成键作用强于NCDs,卡托普利的加入使Hg
2+
脱离NCDs表面,荧光得以恢复. 在最优化的实验条件下,卡托普利的检测范围是0.25~25 μmol·L
-1
,检出限为0.17 μmol·L
-1
. 该探针成功地用于卡托普利片剂中有效成分的测试并取得了满意的效果.
Fluorescent nitrogen-doped carbon dots(NCDs) were synthesized by a facile one-step microwave strategy using lemon juice and urea. The obtained NCDs show stable blue fluorescence with a high quantum yield of 53.1%. Hg
2+
can efficiently coordinate onto the surface of NCDs by means of electrostatic interactions and remarkably quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg
2+
complex(turn-off). Static fluorescence quenching towards Hg
2+
is proved by the fluorescence lifetime measurements and the change of ultraviolet-visible absorption spectra. In addition
the fluorescence of NCDs-Hg
2+
system was recovered with the addition of captopril(CAP) due to the ability of captopril to coordinate with Hg
2+
and the formation of strong Hg
2+
—S bond. When captopril was added
Hg
2+
combined with captopril rather than with NCDs resulting in the remove of Hg
2+
from the surface of NCDs and a significant fluorescence restore of NCDs was observed(turn-on). Under the optimized conditions
good linearity for detecting captopril was attained over the concentration range 0.25-25 μmol·L
-1
with a detection limit of 0.17 μmol·L
-1
. Moreover
this NCDs-based sensor was successfully applied for quantitation of captopril in tablets with satisfactory recovery.
碳点荧光卡托普利Hg(Ⅱ)
carbon dotsfluorescencecaptoprilHg(Ⅱ)
ZHU L, LU N, LIU D X. Hospital internet of things system design and captopril treatment of hypertension nursing intervention [J]. Microprocess. Microsy., 2021, 82:103922.
ROOSTALU U, THISTED L, SKYTTE J L, et al. Effect of captopril on post-infarction remodelling visualized by light sheet microscopy and echocardiography [J]. Sci. Rep., 2021, 11(1):5241-1-13.
VASCONCELOS D L M, DE SOUSA F F, DA SILVA FILHO J G, et al. Raman spectroscopy of captopril crystals under low-temperature conditions [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 243:118734-1-19.
WANG Y, LI Y L, RUAN S Y, et al. Antihypertensive effect of rapeseed peptides and their potential in improving the effectiveness of captopril [J]. J. Sci. Food. Agric., 2020, 101(7):3049-3055.
龙星宇, 陈福南, 邓茂. 高效液相色谱-柱后化学发光法检测人体尿液中的卡托普利 [J]. 分析化学, 2012, 40(7):1076-1080.
LONG X Y, CHEN F N, DENG M. Determination of captopril in human urine samples by high performance liquid chromatography coupled to post-column chemiluminesence detection [J]. Chin. J. Anal. Chem., 2012, 40(7):1076-1080. (in Chinese)
LONG S Y, CHEN Z P, CHEN Y C, et al. Quantitative detection of captopril in tablet and blood plasma samples by the combination of surface-enhanced Raman spectroscopy with multiplicative effects model [J]. J. Raman Spectrosc., 2015, 46(7):605-609.
AREIAS M C C, TOH H S, LEE P T, et al. Voltammetric detection of captopril on graphite screen printed electrodes [J]. Electroanalysis, 2016, 28(4):742-748.
VANCEA S, IMRE S, DONÁTH N G, et al. Determination of free captopril in human plasma by liquid chromatography with mass spectrometry detection [J]. Talanta, 2009, 79(2):436-441.
RESANO M, GARCÍA-RUIZ E, ARAMENDÍA M, et al. Solid sampling-graphite furnace atomic absorption spectrometry for Hg monitoring in soils. Performance as a quantitative and as a screening method [J]. J. Anal. At. Spectrom., 2005, 20(12):1374-1380.
LIU Y, LIU C Y, ZHANG Z Y. Synthesis of highly luminescent graphitized carbon dots and the application in the Hg2+ detection [J]. Appl. Surf. Sci., 2012, 263:481-485.
HORMOZI-NEZHADA M R, BAGHERI H, BOHLOUL A, et al. Highly sensitive turn-on fluorescent detection of captopril based on energy transfer between fluorescein isothiocyanate and gold nanoparticles [J]. J. Lumin., 2013, 134:874-879.
SHI Y, PENG J, MENG X Y, et al. Turn-on fluorescent detection of captopril in urine samples based on hydrophilic hydroxypropyl β-cyclodextrin polymer [J]. Anal. Bioanal. Chem., 2018, 410(28):7373-7384.
SUN X Y, LIU B, LI S C, et al. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 161(5):33-38.
JIANG X H, QIN D M, MO G C, et al. Facile preparation of boron and nitrogen codoped green emission carbon quantum dots for detection of permanganate and captopril [J]. Anal. Chem., 2019, 91(17):11455-11460.
ENSAFI A A, ARABZADEH A. A new sensor for electrochemical determination of captopril using chlorpromazine as a mediator at a glassy carbon electrode [J]. J. Anal. Chem., 2012, 67(5):486-496.
SHAHROKHIAN S, KARIMI M, KHAJEHSHARIFI H. Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril [J]. Sens. Actuators B Chem., 2005, 109(2):278-284.
REZAEI B, DAMIRI S. Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(Ⅱ) electrocatalyst system as a sensor for determination of captopril [J]. Sens. Actuators B Chem., 2008, 134(1):324-331.
VITORETI A B F, ABRAHÃO O, DA SILVA GOMES R A, et al. Electroanalytical determination of captopril in pharmaceutical formulations using boron-doped diamond electrodes [J]. Int. J. Electrochem. Sci., 2014, 9:1044-1054.
ZUO P L, LU X H, SUN Z G, et al. A review on syntheses,properties,characterization and bioanalytical applications of fluorescent carbon dots [J]. Microchim. Acta, 2016, 183(2):519-542.
HOU J Y, LI J L, SUN J C, et al. Nitrogen-doped photoluminescent carbon nanospheres:green,simple synthesis via hair and application as a sensor for Hg2+ ions [J]. RSC Adv., 2014, 4(70):37342-37348.
THULASI S, KATHIRAVAN A, ASHA JHONSI M. Fluorescent carbon dots derived from vehicle exhaust soot and sensing of tartrazine in soft drinks [J]. ACS Omega, 2020, 5(12):7025-7031.
FENG T, AI X Z, AN G H, et al. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency [J]. ACS Nano, 2016, 10(4):4410-4420.
SCHROER Z S, WU Y F, XING Y Q, et al. Nitrogen-sulfur-doped graphene quantum dots with metal ion-resistance for bioimaging [J]. ACS Appl. Nano Mater., 2019, 2(11):6858-6865.
FENG Y J, ZHONG D, MIAO H, et al. Carbon dots derived from rose flowers for tetracycline sensing [J]. Talanta, 2015, 140:128-133.
JU J, CHEN W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments [J]. Anal. Chem., 2015, 87(3):1903-1910.
KUMAR A, KUMARI A, SHARMA G, et al. Carbon quantum dots and reduced graphene oxide modified self-assembled S@C3N4/B@C3N4 metal-free nano-photocatalyst for high performance degradation of chloramphenicol [J]. J. Mol. Liq., 2020, 300:112356-1-14.
JU J, ZHANG R Z, CHEN W. Photochemical deposition of surface-clean silver nanoparticles on nitrogen-doped graphene quantum dots for sensitive colorimetric detection of glutathione [J]. Sens. Actuators B Chem., 2016, 228:66-73.
王诗琪, 涂雨菲, 刘之晓, 等. 微波法制备掺氮碳点及其用作探针检测铁离子 [J]. 发光学报, 2019, 40(6):751-757.
WANG S Q, TU Y F, LIU Z X, et al. Microwave synthesis of nitrogen-doped carbon dots and its application in detection of ferric ions [J]. Chin. J. Lumin., 2019, 40(6):751-757. (in Chinese)
汪雪琴, 洪碧云, 杨旋, 等. 壳聚糖碳点的水热法制备及其对金属离子的选择性研究 [J]. 发光学报, 2019, 40(3):289-297.
WANG X Q, HONG B Y, YANG X, et al. Hydrothermal preparation of chitosan carbon dots and their selectivity to metal ions [J]. Chin. J. Lumin., 2019, 40(3):289-297. (in Chinese)
WANG C X, PAN C W, WEI X R, et al. Emissive carbon dots derived from natural liquid fuels and its biological sensing for copper ions [J]. Talanta, 2020, 208:120375-1-9.
WANG G, GUO Q L, CHEN D, et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian [J]. ACS Appl. Mater. Interfaces, 2018, 10(6):5750-5759.
张震, 曲丹, 安丽, 等. 荧光碳点的制备、发光机理及应用 [J]. 发光学报, 2021, 42(8):1125-1140.
ZHANG Z, QU D, AN L, et al. Preparation,luminescence mechanism and application of fluorescent carbon dots [J]. Chin. J. Lumin., 2021, 42(8):1125-1140. (in Chinese)
CAO M, LI Y, ZHAO Y Z, et al. A novel method for the preparation of solvent-free,microwave-assisted and nitrogen-doped carbon dots as fluorescent probes for chromium(Ⅵ) detection and bioimaging [J]. RSC Adv., 2019, 9(15):8230-8238.
TIAN T, HE Y, GE Y L, et al. One-pot synthesis of boron and nitrogen co-doped carbon dots as the fluorescence probe for dopamine based on the redox reaction between Cr(Ⅵ) and dopamine [J]. Sens. Actuators B Chem., 2016, 240:1265-1271.
LIN L P, RONG M C, LU S S, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution [J]. Nanoscale, 2015, 7(5):1872-1878.
YE Q H, YAN F Y, SHI D C, et al. N,B-doped carbon dots as a sensitive fluorescence probe for Hg2+ ions and 2,4,6-trinitrophenol detection for bioimaging [J]. J. Photochem. Photobiol. B, 2016, 162:1-13.
LIU Y H, ZHAO Y Y, ZHANG Y Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(Ⅱ) ion detection [J]. Sens. Actuators B:Chem., 2014, 196:647-652.
ZHANG Y, CUI P P, ZHANG F, et al. Fluorescent probes for “off-on” highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots [J]. Talanta, 2016, 152:288-300.
YU J, SONG N, ZHANG Y K, et al. Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+ [J]. Sens. Actuators B:Chem., 2015, 214:29-35.
ZONG J, YANG X L, TRINCHI A, et al. Carbon dots as fluorescent probes for “off-on” detection of Cu2+ and L-cysteine in aqueous solution [J]. Biosens. Bioelectron., 2014, 51:330-335.
XU L F, HAO J J, YI T, et al. Probing the mechanism of the interaction between L-cysteine-capped-CdTe quantum dots and Hg2+ using capillary electrophoresis with ensemble techniques [J]. Electrophoresis, 2015, 36(6):859-866.
0
Views
283
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution