浏览全部资源
扫码关注微信
. 华南理工大学 发光材料与器件国家重点实验室,广东 广州 510641
Published:2022-02,
Received:18 November 2021,
Revised:01 December 2021,
移动端阅览
YU-LING ZHANG, YI XIAO, JUN-JIE WANG, et al. Zinc Chloride Modification of Blue Quantum Dot Light-emitting Diode. [J]. Chinese journal of luminescence, 2022, 43(2): 238-246.
YU-LING ZHANG, YI XIAO, JUN-JIE WANG, et al. Zinc Chloride Modification of Blue Quantum Dot Light-emitting Diode. [J]. Chinese journal of luminescence, 2022, 43(2): 238-246. DOI: 10.37188/CJL.20210367.
采用氯化锌(ZnCl
2
)修饰镉基CdSe/ZnS蓝光量子点(B-QD)薄膜,发现与量子点表面结合力更强的ZnCl
2
能够部分取代量子点长链配体油酸,有效钝化量子点表面缺陷,提高薄膜的荧光量子效率(PLQY)。此外,由于ZnCl
2
具有偶极作用,使量子点真空能级提高0.2 eV,一方面可改善电子和空穴载流子注入平衡,另一方面可有效降低发光器件的启亮电压,提高器件的发光寿命。这种无机配体修饰量子点薄膜的方法可能为解决蓝光量子点发光二极管(B-QLEDs)因空穴注入困难和量子点表面缺陷导致器件性能不高的问题提供一个有效思路。
Inorganic zinc chloride(ZnCl
2
) was used as a ligand to modify cadmium-based blue quantum dot(B-QD) film. In this case
ZnCl
2
can partially replace the original long-chain ligand of oleic acid(OA) because of a strong interaction between ZnCl
2
and QDs. The replaced ZnCl
2
can passivate the surface defects of QDs to enhance the photoluminescence quantum yield(PLQY) of the QDs film. Meanwhile
the strategy can significantly improve carrier transport capacity and pull up the vacuum energy level of the QDs film by 0.2 eV due to ZnCl
2
dipoles
which may improve electron and hole injection balance
reduce the turn-on voltage of EL devices
and extend device lifetime as well. This method might provide an effective way to improve performances of blue quantum dot light-emitting diodes.
氯化锌修饰层无机配体取代蓝光量子点发光二极管载流子平衡效率滚降减缓
zinc chloride modificationinorganic ligand exchangeblue quantum dot light-emitting diodesbalanced carriersefficiency roll-off improvement
DAI X L, DENG Y Z, PENG X G, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization[J]. Adv. Mater., 2017, 29(14):1607022-1-22.
QI H, WANG S J, JIANG X H, et al. Research progress and challenges of blue light-emitting diodes based on Ⅱ-Ⅵ semiconductor quantum dots[J]. J. Mater. Chem. C, 2020, 8(30):10160-10173.
SONG J J, WANG O Y, SHEN H B, et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer[J]. Adv. Funct. Mater., 2019, 29(33):1808377-1-9.
LI X Y, LIN Q L, SONG J J, et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness[J]. Adv. Opt. Mater., 2020, 8(2):1901145-1-9.
WANG L S, LIN J, HU Y S, et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency[J]. ACS Appl. Mater. Interfaces, 2017, 9(44):38755-38760.
QIAN L, ZHENG Y, XUE J G, et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures[J]. Nat. Photonics, 2011, 5(9):543-548.
WANG F Z, JIN S L, SUN W D, et al. Enhancing the performance of blue quantum dots light-emitting diodes through interface engineering with deoxyribonucleic acid[J]. Adv. Opt. Mater., 2018, 6(21):1800578-1-10.
SUN K, LI F S, ZENG Q Y, et al. Blue quantum dot light emitting diodes with polyvinylpyrrolidone-doped electron transport layer[J]. Org. Electron., 2018, 63:65-70.
SU Q, SUN Y Z, ZHANG H, et al. Origin of positive aging in quantum-dot light-emitting diodes[J]. Adv. Sci., 2018, 5(10):1800549-1-7.
LIU Y, JIANG C B, SONG C, et al. Highly efficient all-solution processed inverted quantum dots based light emitting diodes[J]. ACS Nano, 2018, 12(2):1564-1570.
HUANG X Y, SU S K, SU Q, et al. The influence of the hole transport layers on the performance of blue and color tunable quantum dot light-emitting diodes[J]. J. Soc. Inf. Dis., 2018, 26(8):470-476.
CHEN S, CAO W R, LIU T L, et al. On the degradation mechanisms of quantum-dot light-emitting diodes[J]. Nat. Commun., 2019, 10(1):765-1-9.
CHENG T, WANG F Z, SUN W D, et al. High-performance blue quantum dot light-emitting diodes with balanced charge injection[J]. Adv. Electron. Mater., 2019, 5(4):1800794-1-9.
LI D Y, BAI J K, ZHANG T T, et al. Blue quantum dot light-emitting diodes with high luminance by improving the charge transfer balance[J]. Chem. Commun., 2019, 55(24):3501-3504.
XU J, WANG L X, ZHAO X L, et al. High-performance blue quantum dot light emitting diode via solvent optimization strategy for ZnO nanoparticles[J]. Nanomaterials, 2021, 11(4):959-1-9.
KIM D, FU Y, KIM J, et al. Improved electroluminescence of quantum dot light-emitting diodes enabled by a partial ligand exchange with benzenethiol[J]. Nanotechnology, 2016, 27(24):245203-1-7.
BROWN P R, KIM D, LUNT R R, et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange[J]. ACS Nano, 2014, 8(6):5863-5872.
SANTRA P K, PALMSTROM A F, TANSKANEN J T, et al. Improving performance in colloidal quantum dot solar cells by tuning band alignment through surface dipole moments[J]. J. Phys. Chem. C, 2015, 119(6):2996-3005.
CHOI J, KIM Y, JO J W, et al. Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics[J]. Adv. Mater., 2017, 29(33):1702350-1-5.
KANG B H, LEE J S, LEE S W, et al. Efficient exciton generation in atomic passivated CdSe/ZnS quantum dots light-emitting devices[J]. Sci. Rep., 2016, 6(1):34659-1-8.
MOON H, CHAE H. Efficiency enhancement of all-solution-processed inverted-structure green quantum dot light-emitting diodes via partial ligand exchange with thiophenol derivatives having negative dipole moment[J]. Adv. Opt. Mater., 2020, 8(1):1901314-1-5.
LI X Y, ZHAO Y B, FAN F J, et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination[J]. Nat. Photonics, 2018, 12(3):159-164.
KIM T, KIM K H, KIM S, et al. Efficient and stable blue quantum dot light-emitting diode[J]. Nature, 2020, 586(7829):385-389.
XIANG C Y, WU L J, LU Z Z, et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes[J]. Nat. Commun., 2020, 11(1):1646-1-9.
KIRKWOOD N, MONCHEN J O V, CRISP R W, et al. Finding and fixing traps in Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal quantum dots:the importance of Z-type ligand passivation[J]. J. Am. Chem. Soc., 2018, 140(46):15712-15723.
XU F, GERLEIN L F, MA X, et al. Impact of different surface ligands on the optical properties of pbs quantum dot solids[J]. Materials, 2015, 8(4):1858-1870.
CALVIN J J, SWABECK J K, SEDLAK A B, et al. Thermodynamic investigation of increased luminescence in indium phosphide quantum dots by treatment with metal halide salts[J]. J. Am. Chem. Soc., 2020, 142(44):18897-18906.
ZHONG Z J, ZOU J H, JIANG C B, et al. Improved color purity and efficiency of blue quantum dot light-emitting diodes[J]. Org. Electron., 2018, 58:245-249.
BÖHM M L, JELLICOE T C, RIVETT J P H, et al. Size and energy level tuning of quantum dot solids via a hybrid ligand complex[J]. J. Phys. Chem. Lett., 2015, 6(17):3510-3514.
HE X M, HU J C, TIAN X. Electronic characteristics of PbS quantum dots passivated by halides on different surfaces[J]. Appl. Surf. Sci., 2021, 568:150736.
GUO Y, LIU B C, CHEN Z, et al. Water-passivated ZnMgO nanoparticles for blue quantum dot light-emitting diodes[J]. J. Mater. Chem. C, 2021, 9(32):10381-10387.
吕玫, 张丽, 张彦, 等. 量子点发光二极管稳定性提高策略[J]. 中国光学, 2021, 14(1):117-134.
LYU M, ZHANG L, ZHANG Y, et al. Strategies for improving the stability of quantum dots light-emitting diodes[J]. Chin. Opt., 2021, 14(1):117-134. (in Chinese)
CHEN F, LIN Q L, SHEN H B, et al. Blue quantum dot-based electroluminescent light-emitting diodes[J]. Mater. Chem. Front., 2020, 4(5):1340-1365.
0
Views
278
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution