浏览全部资源
扫码关注微信
1.吉林师范大学 功能材料物理与化学教育部重点实验室, 吉林 长春 130103
2.吉林师范大学 物理学院, 吉林 四平 136000
3.吉林师范大学 环境友好材料制备与应用教育部重点实验室, 吉林 长春 130103
4.吉林师范大学 化学学院, 吉林 四平 136000
[ "申赫(1986-),男,辽宁铁岭人,博士,实验师,2014年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事半导体光电材料与器件的研究。E-mail: shenhe861206@163.com" ]
[ "王岩岩(1985-),女,吉林长春人,博士,高级实验师,2014年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事纳米光学材料的研究。E-mail: wangyanyan.24@163.com" ]
Published:2022-02,
Received:17 November 2021,
Revised:07 December 2021,
移动端阅览
HE SHEN, YAN-YAN WANG, MING GAO, et al. Local Electronic Structure of Lithium Nitrogen Codoped ZnO Films Revealed by X-ray Absorption Fine Structure Spectroscopy. [J]. 发光学报, 2022, 43(2): 218-225.
HE SHEN, YAN-YAN WANG, MING GAO, et al. Local Electronic Structure of Lithium Nitrogen Codoped ZnO Films Revealed by X-ray Absorption Fine Structure Spectroscopy. [J]. 发光学报, 2022, 43(2): 218-225. DOI: 10.37188/CJL.20210365.
为了实现对Li—N共掺杂p型ZnO薄膜的形成机制以及其稳定p型导电原因的揭示,利用X射线光电子谱及基于同步辐射光源的X射线吸收精细结构谱测试对薄膜的局域电子结构进行了测算分析. 获得了Li—N成键及Li—N复合型受主形成的信号,利用光致发光测量计算其受主能级为122 mV. 证实了薄膜中Li—N复合型受主的形成,而Li—N共掺杂p型ZnO良好的稳定性则归因于Li—N共掺杂在p型ZnO薄膜中实现了Li和N的成键.
It is to reveal the formation mechanism of Li and N codoped p-ZnO films and the cause for the stable p-type conductivity. The films has been studied by investigating their local electronic structures using X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy based on synchrotron radiation source. The signals of Li—N bond and Li—N complex acceptors in the p-ZnO films have been collected
and the acceptor level estimated from photoluminescence spectroscopy is about 122 meV. The formation of Li—N complex acceptors has been confirmed
and the realization of Li—N bond has been attributed to the origin of the good stability of the p-type ZnO films obtained by Li
N codoping method.
氧化锌p型掺杂形成机制稳定性X射线吸收精细结构谱
zinc oxidep-type dopingformation mechanismstabilityX-ray absorption fine structure spectroscopy
ÖZGUR Ü, ALIVOV Y I, LIU C, et al. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys., 2005, 98(4):041301-1-103.
YANG X P, XUE M Y. First-principle investigation of Li-N dual-acceptor co-doping for p type ZnO:the effect of electric fields[J]. Phys. B Condens. Matter, 2021, 620:413271.
ZAGAL-PADILLA C K, GARCÍA-SANDOVAL J, GAMBOA S A, et al. A feasible and low-cost green route to prepare ZnO with n or p-type conductivity by changing the parsley extract concentration[J]. J. Alloys Compd., 2022, 891:162087.
HOU Q Y, QI M D, LI Y. Effects of p-type conductive properties of triaxial strain-regulated ZnO (S,Se,Te) system[J]. Phys. Scr., 2021, 96(12):125815-1-11.
ZHANG S B, WEI S H, ZUNGER A, et al. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J]. Phys. Rev. B, 2001, 63(7):075205-1-7.
LOOK D C, REYNOLDS D C, LITTON C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 2002, 81(10):1830-1832.
NG Z N, CHAN K Y, MUSLIMIN S, et al. P-type characteristic of nitrogen-doped ZnO films[J]. J. Electron. Mater., 2018, 47(9):5607-5613.
SHARMA P, BHARDWAJ R, SINGH R, et al. Investigation of formation mechanism of Li-P dual-acceptor doped p-type ZnO[J]. Appl. Phys. Lett., 2017, 111(9):091604-1-4.
FAN J C, ZHU C Y, FUNG S, et al. Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering[J]. J. Appl. Phys., 2009, 106(7):073709-1-6.
PRADEL K C, UZUHASHI J, TAKEI T, et al. Investigation of nanoscale voids in Sb-doped p-type ZnO nanowires[J]. Nanotechnology, 2018, 29(33):335204-1-8.
ZENG Y J, YE Z Z, XU W Z, et al. Dopant source choice for formation of p-type ZnO∶Li acceptor[J]. Appl. Phys. Lett., 2006, 88(6):062107-1-3.
AU B W C, CHAN K Y. Sodium and potassium doped P-type ZnO films by sol-gel spin-coating technique[J]. Appl. Phys. A, 2017, 123(7):485-1-9.
WANG L G, ZUNGER A. Cluster-doping approach for wide-gap semiconductors:the case of p-type ZnO[J]. Phys. Rev. Lett., 2003, 90(25):256401-1-4.
BARNES T M, OLSON K, WOLDEN C A, et al. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J]. Appl. Phys. Lett., 2005, 86(11):112112-1-3.
PARK C H, ZHANG S B, WEI S H, et al. Origin of p-type doping difficulty in ZnO:the impurity perspective[J]. Phys. Rev. B, 2002, 66(7):073202-1-3.
PERKINS C L, LEE S H, LI X N, et al. Identification of nitrogen chemical states in N-doped ZnO via X-ray photoelectron spectroscopy[J]. J. Appl. Phys., 2005, 97(3):034907-1-7.
LEE E C, KIM Y S, JIN Y G, et al. Compensation mechanism for N acceptors in ZnO[J]. Phys. Rev. B, 2001, 64(8):085120-1-5.
CARVALHO A, ALKAUSKAS A, PASQUARELLO A, et al. A hybrid density functional study of lithium in ZnO:stability, ionization levels, and diffusion[J]. Phys. Rev. B, 2009, 80(19):195205-1-12.
WARDLE M G, GOSS J P, BRIDDON P R. Theory of Li in ZnO:a limitation for Li-based p-type doping[J]. Phys. Rev. B, 2005, 71(15):155205-1-10.
SUN F, SHAN C X, LI B H, et al. A reproducible route to p-ZnO films and their application in light-emitting devices[J]. Opt. Lett., 2011, 36(4):499-501.
ZHANG B Y, YAO B, LI Y. F, et al. Investigation on the formation mechanism of p-type Li-N dual-doped ZnO[J]. Appl. Phys. Lett., 2010, 97(22):222101-1-3.
WANG X H, YAO B, WEI Z P, et al. Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen[J]. J. Phys. D Appl. Phys., 2006, 39(21):4568-4571.
LU J G, ZHANG Y Z, YE Z Z, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method[J]. Appl. Phys. Lett., 2006, 88(22):222114-1-3.
SHEN H, SHAN C X, LIU J S, et al. Stable p-type ZnO films obtained by lithium-nitrogen codoping method[J]. Phys. Status Solidi B, 2013, 250(10):2102-2105.
LIU J S, SHAN C X, SHEN H, et al. ZnO light-emitting devices with a lifetime of 6.8 hours[J]. Appl. Phys. Lett., 2012, 101(1):011106-1-4.
SHEN H, SHAN C X, LI B H, et al. Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors[J]. Appl. Phys. Lett., 2013, 103(23):232112-1-4.
LIN T S, LEE C T. Performance investigation of p-i-n ZnO-based thin film homojunction ultraviolet photodetectors[J]. Appl. Phys. Lett., 2012, 101(22):221118-1-3.
LIU X C, SHI E W, CHEN Z Z, et al. The local structure of Co-doped ZnO films studied by X-ray absorption spectroscopy[J]. J. Alloys Compd., 2008, 463(1-2):435-439.
TSAI S Y, HON M H, LU Y M. Local electronic structure of lithium-doped ZnO films investigated by X-ray absorption near-edge spectroscopy[J]. J. Phys. Chem. C, 2011, 115(20):10252-10255.
LIEW L L, LE H Q, GOH G K L, et al. Microwave-assisted hydrothermally grown epitaxial ZnO films on <111> MgAl2O4 substrate[J]. J. Solid State Chem., 2012, 189:90-95.
KOLOBOV A V, FONS P, HYOT B, et al. Local structure of nitrogen in N-doped amorphous and crystalline GeTe[J]. Appl. Phys. Lett., 2012, 100(6):061910-1-4.
SHARMA J, GORA T, RIMSTIDT J D, et al. X-ray photoelectron spectra of the alkali azides[J]. Chem. Phys. Lett., 1972, 15(2):232-235.
ŚWIATOWSKA-MROWIECKA J, MAURICE V, ZANNA S, et al. XPS study of Li ion intercalation in V2O5 thin films prepared by thermal oxidation of vanadium metal[J]. Electrochim. Acta, 2007, 52(18):5644-5653.
NEWVILLE M. IFEFFIT:interactive XAFS analysis and FEFF fitting[J]. J. Synchrotron Radiat., 2001, 8:322-324.
RAVEL B, NEWVILLE M. ATHENA, ARTEMIS, HEPHAESTUS:data analysis for X-ray absorption spectroscopy using IFEFFIT[J]. J. Synchrotron Rad., 2005, 12(4):537-541.
RAVEL B. ATOMS:crystallography for the X-ray absorption spectroscopist[J]. J. Synchrotron Rad., 2001, 8(2):314-316.
ZHOU H, WANG H Q, LI Y P, et al. Evolution of wurtzite ZnO films on cubic MgO (001) substrates:a structural, optical, and electronic investigation of the misfit structures[J]. ACS Appl. Mater. Interfaces, 2014, 6(16):13823-13832.
WANG X H, YAO B, SHEN D Z, et al. Optical properties of p-type ZnO doped by lithium and nitrogen[J]. Solid State Commun., 2007, 141(11):600-604.
ZENG Y J, YE Z Z, LU J G, et al. Identification of acceptor states in Li-doped p-type ZnO thin films[J]. Appl. Phys. Lett., 2006, 89(4):042106-1-3.
LIU L, XU J L, WANG D D, et al. P-type conductivity in N-doped ZnO:the role of the NZn-VO complex[J]. Phys. Rev. Lett., 2012, 108(21):215501-1-5.
REYNOLDS J G, JRREYNOLDS C L, MOHANTA A, et al. Shallow acceptor complexes in p-type ZnO[J]. Appl. Phys. Lett., 2013, 102(15):152114-1-5.
KURTZ A, HIERRO A, MUÑOZ E, et al. Acceptor levels in ZnMgO∶N probed by deep level optical spectroscopy[J]. Appl. Phys. Lett., 2014, 104(8):081105-1-5.
0
Views
279
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution