Hui-li ZHOU, Feng WU, Zhi-hong ZHANG, et al. Upconversion Luminescence and Temperature Sensing Characteristics of Lu2O3∶Er3+/Yb3+ Phosphor. [J]. Chinese Journal of Luminescence 43(2):192-200(2022)
DOI:
Hui-li ZHOU, Feng WU, Zhi-hong ZHANG, et al. Upconversion Luminescence and Temperature Sensing Characteristics of Lu2O3∶Er3+/Yb3+ Phosphor. [J]. Chinese Journal of Luminescence 43(2):192-200(2022) DOI: 10.37188/CJL.20210363.
Upconversion Luminescence and Temperature Sensing Characteristics of Lu2O3∶Er3+/Yb3+ Phosphor增强出版
在298~873 K温度范围内上转换荧光温度传感特性,在532.8 K时最大绝对灵敏度为0.006 0 K
-1
,在298 K时最大相对灵敏度为0.009 0 K
-1
。结果表明,Lu
2
O
3
∶Er
3+
/Yb
3+
荧光材料非常适合用于宽温度范围荧光温度传感。
Abstract
Lu
2
O
3
∶0.5%Er
3+
/
x
%Yb
3+
(
x
=1
3
5) phosphors were prepared by CO
2
laser zone melting method. X-ray diffraction results showed that all the prepared Lu
2
O
3
∶Er
3+
/Yb
3+
phosphors have a pure Lu
2
O
3
crystal phase. Under the excitation of a 980 nm laser diode
the samples emit bright up-conversion luminescence(UCL). The luminescence intensity and the ratio of green band to red band in luminescence spectra change with Yb
3+
concentration. Besides
the UCL intensity reaches its maximum value when the doping concentrations of Er
3+
and Yb
3+
ions are 0.5% and 3%
respectively. The temperature sensing characteristics of Lu
2
O
3
∶0.5%Er
3+
/3%Yb
3+
were investigated using fluorescence intensity ratio(FIR) technique from 298 K to 873 K. The maximum absolute sensitivity is 0.006 0 K
-1
at 532.8 K
and the maximum relative sensitivity is 0.009 0 K
-1
at 298 K. The above results indicate that the Lu
2
O
3
∶Er
3+
/Yb
3+
phosphor is very suitable for wide-range temperature sensing.
关键词
Lu2O3∶Er3+/Yb3+;上转换发光荧光强度比(FIR)荧光温度传感CO2激光区熔法
Keywords
Lu2O3∶Er3+/Yb3+upconversion luminescencefluorescence intensity ratio(FIR)fluorescence temperature sensingCO2 laser zone melting method
references
WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. J. Appl. Phys., 2003, 94(8):4743-4756.
CHEN J, YANG Z, HUANG Y H, et al. Research progress of optical fiber sensors based on fluorescence quenching effect[J]. Chin. J. Lumin., 2020, 41(10):1269-1278. (in Chinese)
WANG X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors[J]. RSC Adv., 2015, 5(105):86219-86236.
BAO R J, YU L, YE L H, et al. Compact and sensitive Er3+/Yb3+ co-doped YAG single crystal optical fiber thermometry based on up-conversion luminescence[J]. Sens. Actuators A Phys., 2018, 269:182-187.
JIN Y, LI K, LUO X, et al. Upconversion luminescence and temperature sensing properties for Sc2(WO4)3∶Er3+/Yb3+[J]. Chin. J. Lumin., 2021, 42(1):91-97. (in Chinese)
WU Z L, WU H M, YAO Z, et al. Upconversion luminescence and temperature characteristics of GdNbO4∶Er3+/Yb3+ phosphors[J]. Chin. J. Lumin., 2017, 38(9):1129-1135. (in Chinese)
WANG X, LI X X, LI T Y, et al. Thermometric properties of deep tissue temperature sensing material La2O2S∶Yb3+,Er3+ excited by X-ray[J]. Chin. J. Lumin., 2019, 40(1):30-38. (in Chinese)
ZHANG H J, DONG X B, LI H N, et al. Upconversion emission and temperature sensing of R-LaOF∶Er,Yb[J]. Chin. J. Lumin., 2020, 41(5):536-541. (in Chinese)
XIANG G T, LIU X T, XIA Q, et al. Upconversion luminescence properties of β-NaYF4∶Yb3+/Er3+@β-NaYF4∶Yb3+[J]. Chin. J. Lumin., 2020, 41(6):679-683. (in Chinese)
LIU X L, GUO Y Y, MI X Y, et al. Synthesis and luminescence properties of Er3+ doped and Er3+-Yb3+ co-doped Ca12Al14-O32 F2[J]. Chin. J. Lumin., 2019, 40(5):589-594. (in Chinese)
PETERMANN K, HUBER G, FORNASIERO L, et al. Rare-earth-doped sesquioxides[J]. J. Lumin., 2000, 87-89:973-975.
ZHENG K Z, SONG W Y, LV C J, et al. Controllable synthesis and size-dependent upconversion luminescence properties of Lu2O3∶Yb3+/Er3+ nanospheres[J]. CrystEngComm, 2014, 16(20):4329-4337.
BAO R J, AN N, YE L H, et al. Wide-range temperature sensor based on enhanced up-conversion luminescence in Er3+/Yb3+ co-doped Y2O3 crystal fiber[J]. Opt. Fiber Technol., 2019, 52:101989-1-5.
ZHENG L J, GAO X Y, LIU H L, et al. The heating effect of the Er3+/Yb3+ doped Y2O3 nanometer powder by 980 nm laser diode pumping[J]. Spectrosc. Spect. Anal., 2013, 33(1):151-154. (in Chinese)
ZHANG Y H, LIU D, WANG T T, et al. Upconversion luminescence and optical temperature sensing properties for Lu2O3-(Y2O3)∶Yb3+/Er3+/Gd3+ phosphors[J]. Chin. J. Lumin., 2019, 40(12):1478-1485. (in Chinese)
LI X D, ZHANG L, ZHAO H Y, et al. Phase transition and luminescence enhancement induced by Er3+/Yb3+ doping ratio change in nano NaYb1-xF4∶Erx3+[J]. Chin. J. Lumin., 2021, 42(2):187-194. (in Chinese)
LI S W, SUN J S, SHI L L, et al. Influence of doping concentration on the upconversion luminescence in BaGd2ZnO5∶Er3+/Yb3+[J]. Acta Photon. Sinica, 2015, 44(8):0816002-1-6. (in Chinese)
YANG J Z, QIU J B, YANG Z W, et al. Preparation and upconversion luminescence properties of Ba5SiO4Cl6∶Yb3+,Er3+,Li+ phosphors[J]. Acta Phys. Sinica, 2015, 64(13):138101-1-6. (in Chinese)
YANG X, WU Z Y, YANG Z N, et al. Flame-made Y2O3∶Yb3+/Er3+ upconversion nanoparticles:mass production synthesis, multicolor tuning and thermal sensing studies[J]. J. Alloys Compd., 2021, 854:157078-1-7.
ZHANG Z H, ZHOU H L, WU F, et al. Temperature sensing characteristics of up-conversion luminescence in Tm3+/Yb3+ co-doped LuYO3 phosphor[J]. Chin. J. Lumin., 2021, 42(12):1872-1881. (in Chinese)
POLLNAU M, GAMELIN D R, LÜTHI S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev. B, 2000, 61(5):3337-3346.
SINGH V, HARITHA P, VENKATRAMU V, et al. Efficient visible upconversion luminescence in Er3+ and Er3+/Yb3+ co-doped Y2O3 phosphors obtained by solution combustion reaction[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 126:306-311.
QI F W, HUANG F F, ZHOU L F, et al. Long lifetime of Er3+:4I11/2 in low phonon-energy fluoro-chloride glasses for mid-infrared optical applications[J]. J. Alloys Compd., 2018, 731:418-422.
NYKOLAK G, BECKER P C, SHMULOVICH J, et al. Concentration-dependent 4I13/2 lifetimes in Er3+-doped fibers and Er3+-doped planar waveguides[J]. IEEE Photonics Technol. Lett., 1993, 5(9):1014-1016.
ZHAO J Y, SUO H, LI L P, et al. Recent advances in rare-earth doped upconverison materials with thermally-enhanced emissions[J]. Chin. J. Lumin., 2021, 42(11):1673-1685. (in Chinese)
ZHAO W, PING Z Y, ZHENG Q H, et al. Concentration and thermal quenching of SrGdLiTeO6∶Eu3+ red-emitting phosphor for white light-emitting diode[J]. Acta Phys. Sinica, 2018, 67(24):247801-1-10. (in Chinese)