浏览全部资源
扫码关注微信
1.太原理工大学 物理与光电工程学院,山西 太原 030024
2.太原理工大学材料科学与工程学院 新型碳材料研究所,山西 太原 030024
Published:2022-02,
Received:05 November 2021,
Revised:22 November 2021,
移动端阅览
JIAN-HONG WU, QIONG-YAO HAN, BI-NING TIAN, et al. Research Advances of Continuous-wave Laser Driven Full-spectrum White Light Based on Inorganic Material System. [J]. Chinese journal of luminescence, 2022, 43(2): 161-173.
JIAN-HONG WU, QIONG-YAO HAN, BI-NING TIAN, et al. Research Advances of Continuous-wave Laser Driven Full-spectrum White Light Based on Inorganic Material System. [J]. Chinese journal of luminescence, 2022, 43(2): 161-173. DOI: 10.37188/CJL.20210348.
全光谱白光具有和太阳光光谱接近的覆盖可见到红外连续波段的光谱特征,对光学研究具有重要意义。连续激光驱动光学活性材料的全光谱白光因其特殊的发光性能及高效的发光效率吸引了研究者广泛的研究兴趣。本文首先从有无激活中心角度对可产生全光谱白光的无机材料进行了分类总结。然后从光谱性能、温度性能及光电性能三个方面对无机材料体系中的全光谱白光的光物理过程进行了归纳分析,并对全光谱白光的应用做出了展望。最后对这一非线性光学效应的全光谱白光发光现象未来的研究方向及发展趋势进行了总结。
Full-spectrum white light
covering visible to infrared
is of great significance to optical research due to its solar-like spectrum. The full-spectrum white light generated by a continuous-wave laser irradiation on different materials has attracted extensive research interest because of its special optical properties and high luminous efficiency. In this review
the inorganic materials emitting full spectrum white light are classified and summarized from the point of activation center. Then
the photophysical process of full spectrum white light in inorganic material system is summarized and analyzed from three aspects: spectral property
temperature property
and photoelectric property
and its application is promising. Finally
the future research direction and development trend of this nonlinear optical phenomenon are summarized.
全光谱白光无机材料非线性光学效应
full-spectrum white lightinorganic materialnonlinear optical process
PLANCK M. On the law of distribution of energy in the normal spectrum[J]. Ann. Phys., 1901, 4:533-1-6.
CENTINI M, BENEDETTI A, LARCIPRETE M C, et al. Midinfrared thermal emission properties of finite arrays of gold dipole nanoantennas[J]. Phys. Rev. B, 2015, 92(20):205411-1-9.
PETEV M, WESTERBERG N, MOSS D, et al. Blackbody emission from light interacting with an effective moving dispersive medium[J]. Phys. Rev. Lett., 2013, 111(4):043902-1-5.
符义兵, 何锦华, 梁超, 等. 全光谱照明LED中的蓝绿色荧光粉研究[J]. 发光学报, 2018, 39(9):1220-1224.
FU Y B, HE J H, LIANG C, et al. Blue-green phosphors in full spectrum lighting LEDs[J]. Chin. J. Lumin., 2018, 39(9):1220-1224. (in Chinese)
裘金阳, 陈磊, 王新中, 等. 全光谱LED技术研究进展[J]. 发光学报, 2020, 41(2):199-207.
QIU J Y, CHEN L, WANG X Z, et al. Research progress of full spectrum LED[J]. Chin. J. Lumin., 2020, 41(2):199-207. (in Chinese)
WU C F, QIN W P, QIN G S, et al. Near-infrared-to-visible photon upconversion in Mo-doped rutile titania[J]. Chem. Phys. Lett., 2002, 366(3-4):205-210.
STEFANSKI M, LUKASZEWICZ M, HRENIAK D, et al. Broadband laser induced white emission observed from Nd3+ doped Sr2CeO4 nanocrystals[J]. J. Lumin., 2017, 192:243-249.
STREK W, OLESZKO M, WIEWIÓRSKI P, et al. Coherent white emission of graphene[J]. Appl. Phys. Lett., 2020, 116(17):171105-1-5.
ŁUKASZEWICZ M, STREK W. Co-occurrent white emission and photoconductivity in Yb3+ doped YAG nanoceramics induced by infrared laser excitation[J]. J. Lumin., 2018, 199:251-257.
吴长锋, 秦伟平, 秦冠仕, 等. TiO2∶Mo体系的光子雪崩上转换[J]. 物理学报, 2003, 52(6):1540-1544.
WU C F, QIN W P, QIN G S, et al. Photon avalanche upconversion in TiO2∶Mo[J]. Acta Phys. Sinica, 2003, 52(6):1540-1544. (in Chinese)
COEN S, CHAU A H L, LEONHARDT R, et al. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. Opt. Lett., 2001, 26(17):1356-1358.
夏李斌, 王林生, 杨东彪, 等. 白光LED用B2O3-Bi2O3-Eu2O3-MO(M=Mg,Ca,Sr,Ba)红光发射荧光玻璃的结构与发光性能[J]. 发光学报, 2017, 38(4):415-422.
XIA L B, WANG L S, YANG D B, et al. Structure analysis and optical properties of B2O3-Bi2O3-Eu2O3-MO(M=Mg,Ca,Sr,Ba) red light glasses for white LED[J]. Chin. J. Lumin., 2017, 38(4):415-422. (in Chinese)
王巍, 李一, 宁平凡, 等. 广色域钙钛矿量子点/荧光粉转换白光LED[J]. 发光学报, 2018, 39(5):627-632.
WANG W, LI Y, NING P F, et al. Perovskite quantum dot/powder phosphor converted white light LEDs with wide color gamut[J]. Chin. J. Lumin., 2018, 39(5):627-632. (in Chinese)
张伟杰, 魏钦华, 高唐, 等. 用于白光LED的GGAG∶Ce复合荧光膜制备和性能[J]. 发光学报, 2021, 42(4):478-485.
ZHANG W J, WEI Q H, GAO T, et al. Preparation and properties of GGAG∶Ce composite fluorescent film for white LED[J]. Chin. J. Lumin., 2021, 42(4):478-485. (in Chinese)
张玉红, 何蕙羽, 刘航, 等. KLa(MoO4)2∶Yb3+,Ho3+,Tm3+白光荧光粉的制备及性能研究[J]. 发光学报, 2017, 38(11):1469-1474.
ZHANG Y H, HE H Y, LIU H, et al. Preparation and properties of KLa(MoO4)2∶Yb3+,Ho3+,Tm3+ white phosphors[J]. Chin. J. Lumin., 2017, 38(11):1469-1474. (in Chinese)
WU M D, GUAN G J, YAO B Q, et al. Upconversion luminescence of Gd2O3∶Ln3+ nanorods for white emission and cellular imaging via surface charging and crystallinity control[J]. ACS Appl. Nano Mater., 2019, 2(3):1421-1430.
WANG J X, MING T, JIN Z, et al. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%[J]. Nat. Commun., 2014, 5:5669-1-9.
MARCINIAK L, STREK W, HRENIAK D, et al. Temperature of broadband anti-Stokes white emission in LiYbP4O12∶Er nanocrystals[J]. Appl. Phys. Lett., 2014, 105(17):173113-1-4.
REDMOND S, RAND S C, RUAN X L, et al. Multiple scattering and nonlinear thermal emission of Yb3+,Er3+∶Y2O3 nanopowders[J]. J. Appl. Phys., 2004, 95(8):4069-4077.
RYABOCHKINA P A, KHRUSHCHALINA S A, YURLOV I A, et al. Blackbody emission from CaF2 and ZrO2 nanosized dielectric particles doped with Er3+ ions[J]. RSC Adv., 2020, 10(44):26288-26297.
SINGH A K, SINGH S, KUMAR D, et al. Light-into-heat conversion in La2O3∶Er3+-Yb3+ phosphor:an incandescent emission[J]. Opt. Lett., 2012, 37(5):776-778.
STREK W, TOMALA R, MARCINIAK L, et al. Broadband anti-Stokes white emission of Sr2CeO4 nanocrystals induced by laser irradiation[J]. Phys. Chem. Chem. Phys., 2016, 18(40):27921-27927.
CINKAYA H, ERYUREK G, DIBARTOLO B. White light emission based on both upconversion and thermal processes from Nd3+ doped yttrium silicate[J]. Ceram. Int., 2018, 44(4):3541-3547.
ZHU Y S, HAI T, JI X X, et al. Highly effective upconversion broad-band luminescence and enhancement in Dy2O3/Au and Sm2O3/Au composites[J]. J. Lumin., 2017, 181:352-359.
TODA Y, ISHIYAMA S, KHUTORYAN E, et al. Rattling of oxygen ions in a sub-nanometer-sized cage converts terahertz radiation to visible light[J]. ACS Nano, 2017, 11(12):12358-12364.
STREK W, CICHY B, RADOSINSKI L, et al. Laser-induced white-light emission from graphene ceramics-opening a band gap in graphene[J]. Light:Sci. Appl., 2015, 4(1):e237-1-8.
MIAO C, LIU T, ZHU Y S, et al. Super-intense white upconversion emission of Yb2O3 polycrystals and its application on luminescence converter of dye-sensitized solar cells[J]. Opt. Lett., 2013, 38(17):3340-3343.
STREK W, MARCINIAK L, GLUCHOWSKI P, et al. Infrared laser stimulated broadband white emission of Yb3+∶YAG nanoceramics[J]. Opt. Mater., 2013, 35(11):2013-2017.
ERDEM M, TABANLI S, ERYUREK G, et al. Crystalline phase effect on the up-conversion processes and white emission of Yb3+/Er3+/Tm3+∶Y2Si2O7 nanocrystals[J]. Dalton Trans., 2019, 48(19):6464-6472.
CINKAYA H, ERYUREK G, DI BARTOLO B. The anomalous luminescent behaviors of the Nd3+/Yb3+ co-doped yttrium silicate at different physical conditions[J]. Laser Phys., 2019, 29(6):065701-1-9.
ERDEM M, SITT B. Up conversion based white light emission from sol-gel derived α-Y2Si2O7 nanoparticles activated with Yb3+,Er3+ ions[J]. Opt. Mater., 2015, 46:260-264.
KHRUSHCHALINA S A, RYABOCHKINA P A, ZHARKOV M N, et al. Broadband emission from Er-contained yttrium orthophosphate and orthovanadate nanopowders excited by near infrared radiation[J]. J. Lumin., 2019, 205:560-567.
KUNTI A K, GHOSH L, SHARMA S K, et al. Synthesis and luminescence mechanism of white light emitting Eu3+ doped CaZnV2O7 phosphors[J]. J. Lumin., 2019, 214:116530-1-7.
SOARES M R N, FERRO M, COSTA F M, et al. Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm3+ and Yb3+[J]. Nanoscale, 2015, 7(45):19958-19969.
STEFANSKI M, LUKASZEWICZ M, HRENIAK D, et al. Laser induced white emission generated by infrared excitation from Eu3+∶Sr2CeO4 nanocrystals[J]. J. Chem. Phys., 2017, 146(10):104705-1-7.
STEFANSKI M, LUKASZEWICZ M, HRENIAK D, et al. Impact of the synthesis procedure on the spectroscopic properties of anti-Stokes white emission obtained from Sr2CeO4 phosphor[J]. J. Photoch. Photobio. A:Chem., 2019, 382:111855-1-7.
FILHO C I S, OLIVEIRA A L, PEREIRA S C F, et al. Bright thermal (blackbody) emission of visible light from LnO2(Ln=Pr,Tb), photoinduced by a NIR 980 nm laser[J]. Dalton Trans., 2019, 48(8):2574-2581.
TABANLI S, ERYUREK G, DI BARTOLO B, et al. White light emission from Er2O3 nano-powder excited by infrared radiation[J]. Opt. Mater., 2017, 69:207-213.
CHAIKA M, TOMALA R, STREK W. Laser induced broadband Vis and NIR emission from Yb∶YAG nanopowders[J]. J. Alloys Compd., 2021, 865:158957-1-9.
STEFANSKI M, HRENIAK D, STREK W. Broadband white emission from Yb3+ doped Sr2CeO4 nanocrystals[J]. Opt. Mater., 2017, 65:95-98.
CAÑIBANO H, BOULON G, PALATELLA L, et al. Spectroscopic properties of new Yb3+ doped K5Bi(MoO4)4 crystals[J]. J. Lumin., 2003, 102-103:318-326.
CAMPOS S, DENOYER A, JANDL S, et al. Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals[J]. J. Phys.:Condens. Matter, 2004, 16(25):4579-4590.
WANG J W, HAO J H, TANNER P A. Persistent luminescence upconversion for Er2O3 under 975 nm excitation in vacuum[J]. J. Lumin., 2015, 164:116-122.
TOMALA R, GERASYMCHUK Y, HRENIAK D, et al. The influence of excitation density on laser induced white lighting of wide-band-gap semiconductor ZnSe∶Yb polycrystallite ceramics[J]. ECS J. Solid State Sci. Technol., 2020, 9(1):016020-1-4.
CHAIKA M, TOMALA R, VOVK O, et al. Upconversion luminescence in Cr3+∶YAG single crystal under infrared excitation[J]. J. Lumin., 2020, 226:117467-1-6.
CHAIKA M, TOMALA R, STREK W. Surface related laser induced white emission of Cr∶YAG ceramic[J]. Sci. Rep., 2021, 11(1):14063-1-6.
CHAIKA M A, TOMALA R, STREK W. Infrared laser stimulated broadband white emission of transparent Cr∶YAG ceramics obtained by solid state reaction sintering[J]. Opt. Mater., 2021, 111:110673-1-8.
XU W, MIN X L, CHEN X, et al. Ag-SiO2-Er2O3 nanocomposites:highly effective upconversion luminescence at high power excitation and high temperature[J]. Sci. Rep., 2014, 4:5087-1-9.
LIU T, BAI X, MIAO C, et al. Yb2O3/Au upconversion nanocomposites with broad-band excitation for solar cells[J]. J. Phys. Chem. C, 2014, 118(6):3258-3265.
CHEN X, XU W, ZHU Y S, et al. Nd2O3/Au nanocomposites:upconversion broadband emission and enhancement under near-infrared light excitation[J]. J. Mater. Chem. C, 2014, 2(29):5857-5863.
DEBASU M L, ANANIAS D, PASTORIZA-SANTOS I, et al. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2 000 K based on Er3+ emission and blackbody radiation[J]. Adv. Mater., 2013, 25(35):4868-4874.
TOMALA R, HRENIAK D, STREK W. Laser induced broadband white emission of Y2Si2O7 nanocrystals[J]. J. Rare Earths, 2019, 37(11):1196-1199.
ZHU S Q, WANG C H, LI Z, et al. High-efficiency broadband anti-Stokes emission from Yb3+-doped bulk crystals[J]. Opt. Lett., 2016, 41(10):2141-2144.
CESARIA M, COLLINS J, DI BARTOLO B. On the efficient warm white-light emission from nano-sized Y2O3[J]. J. Lumin., 2016, 169:574-580.
BILIR G, OZEN G, BETTINELLI M, et al. Broadband visible light emission from nominally undoped and Cr3+ doped garnet nanopowders[J]. IEEE Photon. J., 2014, 6(4):2201211-1-10.
BILIR G, OZEN G, COLLINS J, et al. Unconventional production of bright white light emission by Nd-doped and nominally un-doped Y2O3 nano-powders[J]. IEEE Photon. J., 2014, 6(4):8200518-1-17.
BILIR G K, LIGUORI J. Laser diode induced white light emission of γ-Al2O3 nano-powders[J]. J. Lumin., 2014, 153:350-355.
STREK W, TOMALA R, LUKASZEWICZ M, et al. Laser induced white lighting of graphene foam[J]. Sci. Rep., 2017, 7:41281-1-9.
LIM Z H, LEE A, LIM K Y Y, et al. Systematic investigation of sustained laser-induced incandescence in carbon nanotubes[J]. J. Appl. Phys., 2010, 107(6):064319-1-7.
LIM Z H, LEE A, ZHU Y W, et al. Sustained laser induced incandescence in carbon nanotubes for rapid localized heating[J]. Appl. Phys. Lett., 2009, 94(7):073106-1-3.
HUANG D, JIANG T, ZHANG Y, et al. Gate switching of ultrafast photoluminescence in graphene[J]. Nano Lett., 2018, 18(12):7985-7990.
KIM Y D, GAO Y D, SHIUE R J, et al. Ultrafast graphene light emitters[J]. Nano Lett., 2018, 18(2):934-940.
BOIKO V, TOMALA R, POSUDIEVSKY O, et al. Laser induced anti-Stokes emission from graphene nanoparticles infiltrated into opal based photonic structure[J]. Opt. Mater., 2020, 101:109744-1-5.
STREK W, MISTA W, WIEWIORSKI P, et al. Laser induced hydrogen emission from ethanol with dispersed graphene particles[J]. Chem. Phys. Lett., 2021, 775:138649.
STEFANSKI M, GŁUCHOWSKI P, STREK W. Laser induced emission spectra of gallium nitride nanoceramics[J]. Ceram. Int., 2020, 46(18):29060-29066.
ZHENG W, SUN B Y, LI Y M, et al. Warm white broadband emission and tunable long lifetimes in Yb3+ doped Gd2O3 nanoparticles[J]. Ceram. Int., 2020, 46(14):22900-22906.
GONZÁLEZ F, KHADKA R, LÓPEZ-JUÁREZ R, et al. Emission of white-light in cubic Y4Zr3O12∶Yb3+ induced by a continuous infrared laser[J]. J. Lumin., 2018, 198:320-326.
RAKOV N, MACIEL G S. Broadband light emission induced by laser absorption and optimized by thermal injection in Nd3+∶Y2SiO5 ceramic powder[J]. J. Am. Ceram. Soc., 2020, 103(3):1782-1788.
ROURA P, COSTA J. Radiative thermal emission from silicon nanoparticles:a reversed story from quantum to classical theory[J]. Eur. J. Phys., 2002, 23:191-203.
CHEN Z, JIA H, SHARAFUDEEN K, et al. Up-conversion luminescence from single vanadate through blackbody radiation harvesting broadband near-infrared photons for photovoltaic cells[J]. J. Alloys Compd., 2016, 663:204-210.
MARCINIAK L, STREK W, BEDNARKIEWICZ A, et al. LiLa1-xNdxP4O12 nanocrystalline powders[J]. Opt. Mater., 2011, 33(10):1492-1494.
WANG J W, TANNER P A. Upconversion for white light generation by a single compound[J]. J. Am. Chem. Soc., 2010, 132(3):947-949.
ZHU Y S, CUI S B, LIU M, et al. Observation of upconversion white light and ultrabroad infrared emission in YbAG∶Ln3+ (Ln= Nd,Sm,Tb,Er)[J]. Appl. Phys. Express, 2015, 8(7):072602-1-4.
WU J H, XU C, QIU J R, et al. Conversion of constant-wave near-infrared laser to continuum white light by Yb-doped oxides[J]. J. Mater. Chem. C, 2018, 6(28):7520-7526.
CINKAYA H, ERYUREK G, BILIR G, et al. Effect of pressure and temperature on the white light produced by ytterbium (Ⅲ) doped and undoped yttrium silicate nanopowders excited by a laser diode[J]. J. Lumin., 2017, 181:321-326.
WU J H, SUN X Y, XIAO W G, et al. Understanding near infrared laser driven continuum white light emission by graphene and its mixture with an oxide phosphor[J]. Adv. Opt. Mater., 2019, 7(20):1900899-1-8.
YAVETSKIY R P, DOBROTVORSKAYA M V, DOROSHENKO A G, et al. Fabrication and luminescent properties of (Y0.99Eu0.01)2O3 transparent nanostructured ceramics[J]. Opt. Mater., 2018, 78:285-291.
STREK W, TOMALA R, LUKASZEWICZ M. Laser induced white lighting of tungsten filament[J]. Opt. Mater., 2018, 78:335-338.
CHAIKA M A, DULINA N A, DOROSHENKO A G, et al. Influence of calcium concentration on formation of tetravalent chromium doped Y3Al5O12 ceramics[J]. Ceram. Int., 2018, 44(12):13513-13519.
STREK W, MARCINIAK L, BEDNARKIEWICZ A, et al. White emission of lithium ytterbium tetraphosphate nanocrystals[J]. Opt. Express, 2011, 19(15):14083-14092.
0
Views
310
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution