Preparation, Optical and Scintillation Properties of Organotin Compounds Doped Polyvinyltoluene-based Plastic Scintillators
Synthesis and Properties of Materials|更新时间:2022-02-25
|
Preparation, Optical and Scintillation Properties of Organotin Compounds Doped Polyvinyltoluene-based Plastic Scintillators
增强出版
Chinese Journal of LuminescenceVol. 43, Issue 2, Pages: 201-208(2022)
作者机构:
1.中国计量大学 材料与化学学院,浙江 杭州 310018
2.中国科学院上海硅酸盐研究所 人工晶体研究中心,上海 201899
3.中国科学院高能物理研究所 核探测与核电子学国家重点实验室,北京 100049
作者简介:
基金信息:
National Natural Science Foundation of China(12005288);the State Key Laboratory of Particle Detection and Electronics(SKLPDE-KF-202112);The Advance Launch Fund of Science and Technology Innovation Project of Shanghai Institute of Ceramics(2020);the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(SKLIPR2119)
Traditional plastic scintillators are not suitable for energy spectroscopy detection due to their low effective atomic number and low density. The preparation of plastic scintillators doped with organic heavy metal compounds provides an effective avenue for energy spectroscopy detection for plastic scintillators. Organotin compounds doped plastic scintillators possess high photopeak sensitivity and retain fast decay characteristics of plastic scintillators. In this paper
polyvinyltoluene(PVT)-based plastic scintillators doped with different concentrations of 2-(tributylstannyl)furan were successfully prepared by free-radical polymerization
and their optical and scintillation properties were characterized and compared. The optical transmittance of 20% 2-(tributylstannyl)furan doped plastic scintillator based on PVT can be up to 90%. Under X-ray excitation
the radioluminescence spectrum of sample shows a broad band between 390 nm and 550 nm peaking at 425 nm. The sample demonstrates a light yield of 6 700 ph/MeV and an energy resolution of 15.8%@662 keV. The scintillation decay time is about 4.3 ns. 1 inch diameter plastic scintillator loaded with 20% 2-(tributylstannyl)furan was also prepared with a light yield of 6 300 ph/MeV and an energy resolution of 15.8%@662 keV.
CHEN X Y, ZHANG Z J, ZHAO J T. Scintillator:a window to explore mysterious scientific world[J]. Chin. J. Nat., 2015, 37(3):165-174. (in Chinese)
RAHMANIFARD R, KATEBI F, ZAHEDI A R, et al. Synthesis and development of a vinyltoluene-based plastic scintillator[J]. J. Lumin., 2018, 194:456-460.
ZHU J, DENG C, JIANG H M, et al. The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators[J]. Nucl. Instrum. Methods Phys. Res., Sect. A, 2016, 835:136-141.
CAO L, KANG W, CHU C S, et al. A study of large area rectangular plastic scintillator for detecting γ with high detection efficiency[J]. Nucl. Electron. Detect. Technol., 2009, 29(1):52-54. (in Chinese)
VAN LOEF E, MARKOSYAN G, SHIRWADKAR U, et al. Gamma-ray spectroscopy and pulse shape discrimination with a plastic scintillator[J]. Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, 788:71-72.
BERTRAND G H V, HAMEL M, SGUERRA F. Current status on plastic scintillators modifications[J]. Chem. - Eur. J., 2014, 20(48):15660-15685.
HAMEL M. Plastic Scintillators:Chemistry and Applications[M]. Cham: Springer, 2021.
GADEY , REDDY H. Gamma Spectrum Enhancement in a Metal Loaded Plastic Scintillator Using PSD[D]. Oregon: Oregon State University, 2017.
HYMAN M, RYAN J J. Heavy elements in plastic scintillators[J]. IRE Trans. Nucl. Sci., 1958, 5(3):87-90.
BERTRAND G H V, HAMEL M, NORMAND S, et al. Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators:state of the art[J]. Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, 776:114-128.
HAJAGOS T J, LIU C, CHEREPY N J, et al. High-Z sensitized plastic scintillators:a review[J]. Adv. Mater., 2018, 30(27):1706956-1-13.
HAMEL M, TURK G, ROUSSEAU A, et al. Preparation and characterization of highly lead-loaded red plastic scintillators under low energy X-rays[J]. Nucl. Instrum. Methods Phys. Res., Sect. A, 2011, 660(1):57-63.
SANDLER S R, TSOU K C. Evaluation of organometallics in plastic scintillators toward γ-radiation[J]. Int. J. Appl. Radiat. Isot., 1964, 15(7):419-426.
SHIRWADKAR U, VAN LOEF E V D, MARKOSYAN G, et al. Metal-loaded plastic scintillators for nuclear non-proliferation[C]. Proceedings of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, 2015: 1-4.
KAGAMI K, KOSHIMIZU M, FUJIMOTO Y, et al. X-ray detection properties of Bi-loaded plastic scintillators synthesized via solvent evaporation[J]. Radiat. Meas., 2020, 135:106361.
CHEREPY N J, SANNER R D, TILLOTSON T M, et al. Bismuth-loaded plastic scintillators for gamma spectroscopy and neutron active interrogation[C]. Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, 2012: 1972-1973.
RUPERT B L, CHEREPY N J, STURM B W, et al. Bismuth-loaded plastic scintillators for gamma-ray spectroscopy[J]. Europhys. Lett., 2012, 97(2):22002-1-4.
BERTRAND G H V, SGUERRA F, DEHÉ-PITTANCE C, et al. Influence of bismuth loading in polystyrene-based plastic scintillators for low energy gamma spectroscopy[J]. J. Mater. Chem. C, 2014, 2(35):7304-7312.
FENG P L, MENGESHA W, ANSTEY M R, et al. Distance dependent quenching and gamma-ray spectroscopy in tin-loaded polystyrene scintillators[J]. IEEE Trans. Nucl. Sci., 2016, 63(1):407-415.
VAN LOEF E V, FENG P, MARKOSYAN G, et al. High energy resolution plastic scintillator[C]. Proceedings of SPIE 9968 Hard X-Ray, Gamma-Ray, and Neutron Detector Physics ⅩⅧ, San Diego, 2016: 996803.
BECKER J, ERIKSSON L, MOBERG L C, et al. On the use of tin-loaded plastic scintillators in Mössbauer spectroscopy[J]. Nucl. Instrum. Methods, 1975, 123(1):199-201.
XU Y W, DENG H Y, LEI H, et al. Initiator-free preparation and properties of polystyrene-based plastic scintillators[J]. J. Polym. Res., 2019, 26(8):177-1-9.
ZHAO H X, YU H, REDDING C, et al. Scintillation liquids loaded with hafnium oxide nanoparticles for spectral resolution of γ rays[J]. ACS Appl. Nano Mater., 2021, 4(2):1220-1227.
SANDLER S R, TSOU K C. Quenching of the scintillation process in plastics by organometallics[J]. J. Phys. Chem., 1964, 68(2):300-304.