浏览全部资源
扫码关注微信
1.北京师范大学核科学与技术学院 射线束教育部重点实验室,北京 100875
2.北京市辐射中心,北京 100875
Published:2022-02,
Received:01 November 2021,
Revised:19 November 2021,
扫 描 看 全 文
Guo-qiang ZHAO, Jin-fu ZHANG, Guang-fu WANG, et al. ZnO Luminescence Behavior Under Low Temperature by Ion-beam-induced Luminescence. [J]. Chinese Journal of Luminescence 43(2):226-237(2022)
Guo-qiang ZHAO, Jin-fu ZHANG, Guang-fu WANG, et al. ZnO Luminescence Behavior Under Low Temperature by Ion-beam-induced Luminescence. [J]. Chinese Journal of Luminescence 43(2):226-237(2022) DOI: 10.37188/CJL.20210339.
离子激发发光(Ions beam induced luminescence
IBIL)可以实时原位分析不同温度、不同离子辐照条件下材料内部点缺陷的演变行为。本文利用2 MeV H
+
研究了300
200
100 K温度下ZnO单晶内部点缺陷发光及其随注量的演变行为。实验中发现ZnO深能级发射和近带边发射,结合Voigt分峰与XPS实验结果,确定红光(1.75 eV)与V
Zn
相关,橙红光(1.95 eV)来自Zn
i
到O
i
跃迁;对于与V
O
相关的绿光(2.10 eV),其红移可能由于温度降低导致更多电子由导带释放到Zn
i
。峰中心位于3.10 eV和3.20 eV近带边发射分别来自于Zn
i
到价带的跃迁和激子复合,红移原因分别为Zn
i
附近局域化能级和带隙收缩。利用单指数公式对发光强度进行拟合,获得的衰减速率常数(
f
)可以表征缺陷的辐射硬度,对比发现深能级发射峰在200 K时辐射硬度最大,而近带边发射峰在300 K时辐射硬度最大。
Ions beam induced luminescence(IBIL) can be used to analyze the evolution of defects under different temperatures and different ion irradiation conditions in real-time
in situ.
In this paper
the evolution of luminescence of point defects with fluence inside ZnO single crystals at 300
200
100 K was analyzed using 2 MeV H
+
. The deep-band emission and near-band emission of ZnO were observed in the experiments
and combined with the Voigt splitting results
it was determined that the origin of red emission(1.75 eV) was V
Zn
and the orange-red emission(1.95 eV) was associated with the transitions from the conduction band to O
i
. While for the green emission(2.10 eV) that redshifts with decreasing temperature
it was mainly related to V
O
. The reason of redshift was that more electrons from conduction band were released to Zn
i
. For the near-band emission
3.10 eV and 3.20 eV emission mainly associated with the transitions from Zn
i
to the valence band and recombination of excitons
and the redshifts were mainly due to the localization energy level of Zn
i
and the temperature-induced band-gap shrinkage. Using the single exponential formula to fit the decay of the luminescence intensity with fluence
the decay rate costant(
f
) was used to characterize the irradiation hardness of the defects. It was found that all three peaks of the deep-band emission were the maximum irradiation hardness at 200 K
while for the two peaks of the near-band emission
they had the maximum irradiation hardness at 300 K. This may be due to the fact that during the temperature increase
a large number of electron holes obtained enough thermal kinetic energy to be released from the originally bound by the point defect
coupled with the temperature-induced band-gap shrinkage
the dual effect made the radiation recombination inside the crystal enhanced
and thus the irradiation resistance was enhanced.
离子激发发光温度点缺陷ZnO
ion-beam-induced luminescencetemperaturepoint defectsZnO
ZHANG X M, LU M Y, ZHANG Y, et al. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film[J]. Adv. Mater., 2009, 21(27):2767-2770.
JANOTTI A, VAN DE WALLE C G. New insights into the role of native point defects in ZnO[J]. J. Cryst. Growth, 2006, 287(1):58-65.
JANOTTI A, VAN DE WALLE C G. Native point defects in ZnO[J]. Phys. Rev. B, 2007, 76(16):165202-1-22.
OBA F, CHOI M, TOGO A, et al. Point defects in ZnO:an approach from first principles[J]. Sci. Technol. Adv. Mater., 2011, 12(3):034302-1-14.
LI W J, YIN H X, MO H L, et al. Thermal evolution of point defects in indium doped ZnO transparent conducting films[J]. Thin Solid Films, 2020, 713:138350-1-7.
CUI M M, ZHANG ZL, WANG Y F, et al. Temperature dependence of bulk luminescence from ZnO[J]. Luminescence, 2018, 33(4):654-659.
EPIE E N, CHU W K. Ionoluminescence study of Zn- and O- implanted ZnO crystals:an additional perspective[J]. Appl. Surf. Sci., 2016, 371:28-34.
仇猛淋, 赵国强, 王庭顺, 等. 不同离子辐照氟化锂材料时原位发光光谱测量分析[J]. 物理学报, 2020, 69(10):107801-1-7.
QIU M L, ZHAO G Q, WANG T S, et al. In situ luminescence measurement from lithium fluoride under various ions[J]. Acta Phys. Sinina, 2020, 69(10):107801-1-7. (in Chinese)
LUO C W, QIU M L, WANG G F, et al. Ionoluminescence and photoluminescence study of annealing and ion irradiation effects on zinc oxide[J]. Nucl. Instrum. Meth. Phys. Res. Sect. B:Beam Interact. Mater. Atoms, 2020, 471:7-12.
WILLANDER M, NUR O, SADAF J R, et al. Luminescence from zinc oxide nanostructures and polymers and their hybrid devices[J]. Materials, 2010, 3(4):2643-2667.
CRAPANZANO R, VILLA I, MOSTONI S, et al. Morphology related defectiveness in ZnO luminescence:from bulk to nano-size[J]. Nanomaterials, 2020, 10(10):1983-1-19.
PURBAYANTO M A K, NURFANI E, NARADIPA M A, et al. Enhancement in green luminescence of ZnO nanorods grown by DC-unbalanced magnetron sputtering at room temperature[J]. Opt. Mater., 2020, 108:110418-1-6.
CABRAL L, LOPEZ-RICHARD V, DA SILVA J L F, et al. Insights into the nature of optically active defects of ZnO[J]. J. Lumin., 2020, 227:117536.
KUMAWAT A, SHARMA A, CHATTOPADHYAY S, et al. Temperature dependent photoluminescence in sol-gel derived Ce doped ZnO nanoparticles[J]. Mater. Today:Proc., 2021, 43:2965-2969.
QIU M L, CHU Y J, WANG G F, et al. Ion-beam-induced luminescence of LiF using negative ions[J]. Chin. Phys. Lett., 2017, 34(1):016104-1-4.
仇猛淋, 王广甫, 褚莹洁, 等. 高低温离子激发发光分析系统的建立及其应用[C]. 中国核科学技术进展报告(第五卷)——中国核学会2017年学术年会论文集第6册(核化工分卷、核化学与放射化学分卷、辐射物理分卷), 威海, 2017.
QIU M L, WANG G F, CHU Y J, et al. Development of variable temperature chamber for ion beam induced luminescence analysis and its application[C]. China Nuclear Science and Technology Progress Report(Volume 5) —Volume 6 of the 2017 Academic Annual Conference Proceedings of the Chinese Nuclear Society(Nuclear Chemical Volume, Nuclear Chemistry and Radiochemistry Volume, and Radiation Physics Volume), Weihai, 2017. (in Chinese)
罗长维, 仇猛淋, 王广甫, 等. 利用离子激发发光研究ZnO离子注入和退火处理的缺陷变化[J]. 物理学报, 2020, 69(10):102901-1-6.
LUO C W, QIU M L, WANG G F, et al. Ions beam induced luminescence study of variation of defects in zinc oxide during ion implant and after annealing[J]. Acta Phys. Sinina, 2020, 69(10):102901-1-6. (in Chinese)
QIU M L, YIN P, WANG G F, et al. In situ luminescence measurement of 6H-SiC at low temperature[J]. Chin. Phys. B, 2020, 29(4):046106-1-6.
HU Y, XUE X D, WU Y C. Slow positron beam study of hydrogen ion implanted ZnO thin films[J]. Radiat. Phys. Chem., 2014, 101:20-23.
LENZ C, TALLA D, RUSCHEL K, et al. Factors affecting the Nd3+(REE3+) luminescence of minerals[J]. Miner. Petrol., 2013, 107(3):415-428.
林洁丽. 高分辨(饱和)分子光谱谱线线型、线宽及其应用的研究[D]. 武汉: 中国科学院研究生院(武汉物理与数学研究所), 2001.
LIN J L. Research on Spectral Line Profile and Line Width of High-resolution(Saturation) Molecular Spectra and Its Application[D]. Wuhan: University of Chinese Academy of Sciences(Wuhan Institute of Physics and Mathematics), 2001. (in Chinese)
TARUN M C, IQBAL M Z, MCCLUSKEY M D. Nitrogen is a deep acceptor in ZnO[J]. AIP Adv., 2011, 1(2):022105-1-7.
DJURIŠIĆ A B, LEUNG Y H, TAM K H, et al. Defect emissions in ZnO nanostructures[J]. Nanotechnology, 2007, 18(9):095702-1-8.
JEONG S H, KIM B S, LEE B T. Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient[J]. Appl. Phys. Lett., 2003, 82(16):2625-2627.
STUDENIKIN S A, GOLEGO N, COCIVERA M. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis[J]. J. Appl. Phys., 1998, 84(4):2287-2294.
TÜRKER M, DEICHER M, JOHNSTON K, et al. Structural and optical characterization of indium-antimony complexes in ZnO[J]. Hyperfine Interact., 2015, 230(1-3):65-71.
FOLEY M, TON-THAT C, PHILLIPS M R. Cathodoluminescence inhomogeneity in ZnO nanorods[J]. Appl. Phys. Lett., 2008, 93(24):243104-1-3.
PHILLIPS M R, GELHAUSEN O, GOLDYS E M. Cathodoluminescence properties of zinc oxide nanoparticles[J]. Phys. Stat. Sol. (A), 2004, 201(2):229-234.
FABBRI F, VILLANI M, CATELLANI A, et al. Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures[J]. Sci. Rep., 2015, 4(1):5158-1-6.
LIN B X, FU Z X, JIA Y B. Green luminescent center in undoped zinc oxide films deposited on silicon substrates[J]. Appl. Phys. Lett., 2001, 79(7):943-945.
QI M D, HOU Q Y, SHA S L, et al. First-principles of Be/Mg/Ca doping and point defects of VZn and Hi in the magnetic and optical properties of ZnO[J]. Mater. Sci. Semicond. Process., 2021, 131:105857.
FAN H B, YANG S Y, ZHANG P F, et al. Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and X-ray photoelectron spectroscopy[J]. Chin. Phys. Lett., 2007, 24(7):2108-2111.
LEUNG C Y, DJURIŠIĆ A B, LEUNG Y H, et al. Influence of the carrier gas on the luminescence of ZnO tetrapod nanowires[J]. J. Cryst. Growth, 2006, 290(1):131-136.
KNUTSEN K E, GALECKAS A, ZUBIAGA A, et al. Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation[J]. Phys. Rev. B, 2012, 86(12):121203-1-5.
ZHENG L, WANG G F, QIU M L, et al. Ionoluminescence spectra of a ZnO single crystal irradiated with 2.5 MeV H+ ions[J]. Chin. Phys. Lett., 2017, 34(8):087801-1-4.
GOMI M, OOHIRA N, OZAKI K, et al. Photoluminescent and structural properties of precipitated ZnO fine particles[J]. Jpn. J. Appl. Phys., 2003, 42(2A):481-485.
AHN C H, KIM Y Y, KIM D C, et al. A comparative analysis of deep level emission in ZnO layers deposited by various methods[J]. J. Appl. Phys., 2009, 105(1):013502-1-5.
VANHEUSDEN K, SEAGER C H, WARREN W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J]. Appl. Phys. Lett., 1996, 68(3):403-405.
TON-THAT C, WESTON L, PHILLIPS M R. Characteristics of point defects in the green luminescence from Zn- and O-rich ZnO[J]. Phys. Rev. B:Condens. Matter, 2012, 86(11) :115205.
TSENG L T, YI J B, ZHANG X Y, et al. Green emission in carbon doped ZnO films[J]. AIP Adv., 2014, 4(6):67117.
CAO B Q, CAI W P, ZENG H B. Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays[J]. Appl. Phys. Lett., 2006, 88(16):161101-1-3.
QIU M L, YIN P, LUO C W, et al. Development of an ion beam induced luminescence set-up with a temperature controlled target stage and its application[J]. Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 2019, 450:69-72.
CHANG P C, LU J G. Temperature dependent conduction and UV induced metal-to-insulator transition in ZnO nanowires[J]. Appl. Phys. Lett., 2008, 92(21):212113-1-3.
KUMAR V, SWART H C, NTWAEABORWA O M, et al. Origin of the red emission in zinc oxide nanophosphors[J]. Mater. Lett., 2013, 101:57-60.
EMIN D. On the existence of free and self-trapped carriers in insulators:an abrupt temperature-dependent conductivity transition[J]. Adv. Phys., 1973, 22(1):57-116.
JANOTTI A, VAN DE WALLE C G. Fundamentals of zinc oxide as a semiconductor[J]. Rep. Prog. Phys., 2009, 72(12):126501-1-29.
VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1):149-154.
ZENG H B, LI Z G, CAI W P, et al. Strong localization effect in temperature dependence of violet-blue emission from ZnO nanoshells[J]. J. Appl. Phys., 2007, 102(10):104307-1-9.
NEUVONEN P T, VINES L, SVENSSON B G, et al. Intrinsic point-defect balance in self-ion-implanted ZnO[J]. Phys. Rev. Lett., 2013, 110(1):15501.
CHO Y H, GAINER G H, FISCHER A J, et al. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells[J]. Appl. Phys. Lett., 1998, 73(10):1370-1372.
0
Views
250
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution