浏览全部资源
扫码关注微信
宁波大学高等技术研究院 红外材料及器件实验室,浙江 宁波 315211
Published:2022-01,
Received:28 October 2021,
Revised:09 November 2021,
移动端阅览
GANG-JIE ZHOU, YI-XUAN HU, LIN-LING TAN, et al. Broadband Near-infrared Luminescence and Regulation Mechanism of Tellurium-doped Calcium-Aluminum-germanate Glass. [J]. Chinese journal of luminescence, 2022, 43(1): 51-57.
GANG-JIE ZHOU, YI-XUAN HU, LIN-LING TAN, et al. Broadband Near-infrared Luminescence and Regulation Mechanism of Tellurium-doped Calcium-Aluminum-germanate Glass. [J]. Chinese journal of luminescence, 2022, 43(1): 51-57. DOI: 10.37188/CJL.20210337.
可调宽带近红外发光材料作为红外光源和可调谐光纤激光器核心组件,在高容量光纤通信、成像和遥感等现代技术中发挥着至关重要的作用。本文研究了碲掺杂钙-铝-锗酸盐玻璃的宽带近红外发光性能调控方案及其机理。通过引入碳构建还原气氛,还原TeO
2
原料为碲原子;再优化CaO、Al
2
O
3
含量,调整碲掺杂钙-铝-锗酸盐玻璃中碲拓扑笼的结构和大小,稳定并调控碲团簇发光中心,实现高效且可调谐的宽带近红外发光。最后通过改变TeO
2
掺杂含量,提供可形成团簇的合适含量碲源,进一步增强碲近红外发光,并揭示了碲近红外发光性能调控机理。本研究为未来宽带、高效、可调谐的近红外发光材料设计提供了重要指导,推进了其在宽带光放大器和可调谐激光器中的应用。
Tunable broadband near-infrared(NIR)-emitting materials play a crucial role as NIR light sources and tunable fiber lasers in modern technologies such as high-capacity telecommunication
imaging
and remote sensing. In this work
we report the control scheme and mechanism of the broadband near-infrared luminescence properties in the tellurium-doped calcium-aluminum-germanate glass. By introducing carbon to construct a reducing atmosphere
the raw material TeO
2
is reduced to tellurium element. Through optimizing CaO and Al
2
O
3
content
the configurations and size of topological cages in tellurium doped calcium-aluminum-germanate glass were adjusted to stabilize and tailor tellurium clusters
enabling tunable NIR emission. Furthermore
adjusting the content of TeO
2
provides optimal tellurium source to form clusters
and thus enhancing tellurium NIR luminescence. The regulation mechanism of tellurium NIR luminescence performance in the calcium-aluminum-germanate glass is clarified. This work provides important guidance for the design of broadband
efficient and tunable NIR luminescent materials
promoting their practical application in broadband optical amplifiers and tunable lasers.
碲团簇近红外发光宽带可调谐调控机理
tellurium clustersnear-infrared luminescencetunable broadbandregulation mechanism
DRAGIC P, HAWKINS T, FOY P, et al. Sapphire-derived all-glass optical fibres[J]. Nat. Photonics, 2012, 6(9): 627-633.
FERMANN M E, HARTL I. Ultrafast fibre lasers[J]. Nat. Photonics, 2013, 7(11): 868-874.
DIANOV E M, SEMJONOV S L, BUFETOV I A. New generation of optical fibres[J]. Quantum Electron., 2016, 46(1): 1-10.
BUFETOV I A, DIANOV E M. Bi-doped fiber lasers[J]. Laser Phys. Lett., 2009, 6(7): 487-504.
MAZURAK Z, BODYŁ S, LISIECKI R, et al. Optical properties of Pr3+,Sm3+ and Er3+ doped P2O5-CaO-SrO-BaO phosphate glass[J]. Opt. Mater., 2010, 32(4): 547-553.
XUE T F, ZHANG L Y, HU J J, et al. Thermal and spectroscopic properties of Nd3+-doped novel fluorogallate glass[J]. Opt. Mater., 2015, 47: 24-29.
CHEN W P, HU F F, WEI R F, et al. Optical thermometry based on up-conversion luminescence of Tm3+ doped transparent Sr2YF7 glass ceramics[J]. J. Lumin., 2017, 192: 303-309.
QIAO X S, FAN X P, WANG M Q, et al. Up-conversion luminescence and near infrared luminescence of Er3+ in transparent oxyfluoride glass-ceramics[J]. Opt. Mater., 2004, 27(3): 597-603.
CHEN D Q. Near-infrared long-lasting phosphorescence in transparent glass ceramics embedding Cr3+-doped LiGa5O8 nanocrystals[J]. J. Eur. Ceram. Soc., 2014, 34(15): 4069-4075.
SUZUKI T, ARAI Y, OHISHI Y. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics[J]. J. Lumin., 2008, 128(4): 603-609.
ZHANG J, HAN L H, GUAN Z X, et al. Electronic and luminescence characteristics of interstitial Bi0 atom in bismuth-doped silica optical fiber[J]. J. Lumin., 2019, 207: 346-350.
张慧敏, 丛妍, 佟尧, 等. 八面体结构纳米CeO2∶Er3+的合成及发光性质[J]. 发光学报, 2020, 41(4): 386-391.
ZHANG H M, CONG Y, TONG Y, et al. Preparation and luminescence properties of octahedral CeO2∶Er3+ nanophosphor[J]. Chin. J. Lumin., 2020, 41(4): 386-391. (in Chinese)
蔡吉泽, 庞然, 于湛, 等. 近红外发光材料Mg2SnO4∶Cr3+的制备及发光性质[J]. 发光学报, 2019, 40(12): 1505-1513.
CAI J Z, PANG R, YU Z, et al. Preparation and luminescence properties of near infrared luminescent material Mg2SnO4∶Cr3+[J]. Chin. J. Lumin., 2019, 40(12): 1505-1513. (in Chinese)
KANG S L, QIAO T, HUANG X J, et al. Enhanced CW lasing and Q-switched pulse generation enabled by Tm3+-doped glass ceramic fibers[J]. Adv. Opt. Mater., 2020, 9(3): 2001774-1-8.
ZHAO Y Q, WONDRACZEK L, MERMET A, et al. Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers[J]. Opt. Express, 2015, 23(9): 12423-12433.
YU Y Z, FANG Z J, MA C S, et al. Mesoscale engineering of photonic glass for tunable luminescence[J]. NPG Asia Mater., 2016, 8(10): e318-1-10.
CHEN J J, SHI Z, ZHOU S F, et al. Local chemistry engineering in doped photonic glass for optical pulse generation[J]. Adv. Opt. Mater., 2019, 7(6): 1801413-1-11.
ZHOU S F, JIANG N, DONG H F, et al. Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics[J]. Nanotechnology, 2007, 19(1): 015702-1-6.
ROMANOV A N, HAULA E V, SHASHKIN D P, et al. On the origin of near-IR luminescence in SiO2 glass with bismuth as the single dopant. Formation of the photoluminescent univalent bismuth silanolate by SiO2 surface modification[J]. J. Lumin., 2017, 183: 233-237.
XIONG P X, LI Y Y, PENG M Y, et al. Recent advances in super broad infrared luminescence bismuth-doped crystals[J]. iScience, 2020, 23(10): 101578-1-26.
TAN L L, KANG S L, PAN Z W, et al. Topo-chemical tailoring of tellurium quantum dot precipitation from supercooled polyphosphates for broadband optical amplification[J]. Adv. Opt. Mater., 2016, 4(10): 1624-1634.
PUNPAI P, MORIMOTO S, KHONTHON S, et al. Effect of carbon addition and TeO2 concentration on NIR luminescent characteristics of TeO2-doped soda-lime-silicate glasses[J]. J. Non-Cryst. Solids, 2008, 354(52-54): 5529-5532.
KHONTHON S, MORIMOTO S, ARAI Y, et al. Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics[J]. J. Ceram. Soc. Jpn., 2007, 115(1340): 259-263.
SUN H T, SAKKA Y, SHIRAHATA N, et al. Near-infrared photoluminescence from molecular crystals containing tellurium[J]. J. Mater. Chem., 2012, 22(47): 24792-24797.
TAN L L, MAURO J C, XU S H, et al. Unusual thermal response of tellurium near-infrared luminescence in phosphate laser glass[J]. Opt. Lett., 2018, 43(19): 4823-4826.
WANG Q M, LIN Y M, LIU K G. Role of anions associated with the formation and properties of silver clusters[J]. Acc. Chem. Res., 2015, 48(6): 1570-1579.
谭林玲. 超宽带光放大用新型碲团簇掺杂激光玻璃设计、制备及其发光性能研究[D]. 广州: 华南理工大学, 2020.
TAN L L. Design,Fabrication and Optical Properties of Novel Tellurium Cluster Doped Laser Glass for Ultra-broadband Optical Amplification[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
BECK J. Rings, cages and chains—The rich structural chemistry of the polycations of the chalcogens[J]. Coord. Chem. Rev., 1997, 163: 55-70.
张坚, 张宇鸿, 刘建宏. 环状碲团簇Ten(n=3~12)拉曼光谱的密度泛函理论研究[J]. 原子与分子物理学报, 2016, 33(4): 621-626.
ZHANG J, ZHANG Y H, LIU J H. DFT study onRaman spectra of cyclic tellurium clusters Ten(n=3-12)[J]. J. At. Mol. Phys., 2016, 33(4): 621-626. (in Chinese)
TAN L L, HUANG L, HE C C, et al. Tailoring cluster configurations enables tunable broad-band luminescence in glass[J]. Chem. Mater., 2020, 32(19): 8653-8661.
ZHAO Y Q, PENG M Y, MERMET A, et al. Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2 glass via composition modulation[J]. J. Mater. Chem. C, 2014, 2(37): 7830-7835.
MARKGRAF S A, SHARMA S K, BHALLA A S. Raman study of fresnoite-type materials: polarized single crystal, crystalline powders, and glasses[J]. J. Mater. Res., 1993, 8(3): 635-648.
0
Views
256
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution