浏览全部资源
扫码关注微信
1.华为技术有限公司,广东 深圳 518129
2.成都中电熊猫显示科技有限公司,四川 成都 610200
3.太原理工大学 新材料界面科学与工程教育部重点实验室,山西 太原 030024
Published:2022-01,
Received:28 October 2021,
Revised:27 November 2021,
移动端阅览
CHAO WANG, XIANG-FENG LI, ZE-MEI LIU, et al. High Efficiency Doping-free White Organic Light Emitting Diodes by Combining Exciplex and Phosphorescent Ultrathin Layer. [J]. Chinese journal of luminescence, 2022, 43(1): 85-93.
CHAO WANG, XIANG-FENG LI, ZE-MEI LIU, et al. High Efficiency Doping-free White Organic Light Emitting Diodes by Combining Exciplex and Phosphorescent Ultrathin Layer. [J]. Chinese journal of luminescence, 2022, 43(1): 85-93. DOI: 10.37188/CJL.20210336.
将蓝光激基复合物mCP∶PO-T2T和磷光超薄层结合,分别制备了基于Ir(pq)
2
acac(~0.5 nm)/mCP∶PO-T2T/Ir(pq)
2
acac(~0.5 nm)结构的双色互补色和基于Ir(ppy)
3
(~0.5 nm)/mCP∶PO-T2T/Ir(pq)
2
acac (~0.5 nm)结构的三基色非掺杂白光有机发光二极管(White organic light emitting diodes
WOLED),以探索超薄层在激基复合物中的应用。所制备的双色互补色WOLED,其最大电流效率、功率效率和外量子效率分别为46.1 cd/A、43.9 lm/W和22.2%,而三基色WOLED所实现的最大电流效率、功率效率和外量子效率分别为66.8 cd/A、63.5 lm/W和24.2%。研究分析表明,从高能的蓝光激基复合物发光层向两侧低能的红光和绿光磷光超薄层有效的能量传递是实现非掺杂WOLED高效率的原因。
In this work
we prepared doping-free white organic light emitting diodes(WOLED) by combining exciplex and phosphorescent ultrathin layer. As results
high efficiency WOLED based two complementary color structure of Ir(pq)
2
acac(~0.5 nm)/mCP∶PO-T2T/Ir(pq)
2
acac(~0.5 nm) and red-green-blue(RGB) color structure of Ir(ppy)
3
(~0.5 nm)/mCP∶PO-T2T/Ir(pq)
2
acac(~0.5 nm) are achieved by setting different colors phosphorescent ultrathin layer on the two sides of blue exciplex emitting layer of mCP∶PO-T2T
respectively. The maximum current efficiency
power efficiency and external quantum efficiency of two complementary color WOLED are 46.1 cd/A
43.9 lm/W and 22.2%
respectively; and the RGB WOLED are 66.8 cd/A
63.5 lm/W and 24.2%
respectively. The discussions demonstrated the efficient energy transfer from high energy blue exciplex to low energy red and green phosphorescent ultrathin layer is responsible for the high efficiency of doping-free WOLED.
白光有机发光二极管激基复合物超薄层非掺杂
white organic light emitting diodesexciplexultrathin layerdoping-free
KIDO J, HONGAWA K, OKUYAMA K, et al. White light-emitting organic electroluminescent devices using the poly (N-vinylcarbazole) emitter layer doped with three fluorescent dyes[J]. Appl. Phys. Lett., 1994, 64(7): 815-817.
SUN Y R, GIEBINK N C, KANNO H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices[J]. Nature, 2006, 440(7086): 908-912.
SUN N, WANG Q, ZHAO Y B, et al. High-performance hybrid white organic light-emitting devices without interlayer between fluorescent and phosphorescent emissive regions[J]. Adv. Mater., 2014, 26(10): 1617-1621.
NISHIDE J I, NAKANOTANI H, HIRAGA Y, et al. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence[J]. Appl. Phys. Lett., 2014, 104(23): 233304-1-5.
王培, 王振, 郑新, 等. 中间层对三原色白光OLED的影响[J]. 发光学报, 2018, 39(6): 809-814.
WANG P, WANG Z, ZHENG X, et al. Effects of interlayer on white organic light-emitting diodes based on three primary colors[J]. Chin. J. Lumin., 2018, 39(6): 809-814. (in Chinese)
CHOUKRI H, FISCHER A, FORGET S, et al. White organic light-emitting diodes with fine chromaticity tuning via ultrathin layer position shifting[J]. Appl. Phys. Lett., 2006, 89(18): 183513-1-3.
ZHAO Y B, CHEN J S, MA D G. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes[J]. ACS Appl. Mater. Interfaces, 2013, 5(3): 965-971.
ZHAO B, ZHANG H, WANG Z Q, et al. Non-doped white organic light-emitting diodes with superior efficiency/color stability by employing ultra-thin phosphorescent emitters[J]. J. Mater. Chem. C, 2018, 6(15): 4250-4256.
XUE C, JIANG X, ZHANG G, et al. Bipolar TADF interlayer for high performance hybrid WOLEDs with an ultrathin non-doped emissive layer architecture[J]. Opt. Mater., 2021, 111: 110592-1-8.
ZHAO B, ZHANG T Y, CHU B, et al. Highly efficient tandem full exciplex orange and warm white OLEDs based on thermally activated delayed fluorescence mechanism[J]. Org. Electron., 2015, 17: 15-21.
袁青松, 付祥恩. 基于激基复合物的高效单色和白色有机发光二极管[J]. 液晶与显示, 2020, 35(9): 892-899.
YUAN Q S, FU X E. High efficient monochromatic and white organic light-emitting diodes based on exciplex[J]. Chin. J. Liq. Cryst. Disp., 2020, 35(9): 892-899. (in Chinese)
LIU W, CHEN J X, ZHENG C J, et al. Novel strategy to develop exciplex emitters for high-performance OLEDs by employing thermally activated delayed fluorescence materials[J]. Adv. Funct. Mater., 2016, 26(12): 2002-2008.
CHAPRAN M, PANDER P, VASYLIEVA M, et al. Realizing 20% external quantum efficiency in electroluminescence with efficient thermally activated delayed fluorescence from an exciplex[J]. ACS Appl. Mater. Interfaces, 2019, 11(14): 13460-13471.
高浩锋, 方圣欢, 张叶峰, 等. 激基复合物给体作间隔层对激子复合区域的调节[J]. 发光学报, 2017, 38(4): 514-520.
GAO H F, FANG S H, ZHANG Y F, et al. Adjustment of exciton recombination zone by utilizing the donor of exciplex as spacer layer[J]. Chin. J. Lumin., 2017, 38(4): 514-520. (in Chinese)
ZHANG M, ZHENG C J, WANG K, et al. Hydrogen-bond-assisted exciplex emitters realizing improved efficiencies and stabilities in organic light emitting diodes[J]. Adv. Funct. Mater., 2021, 31(13): 2010100-1-10.
XU T, ZHOU J G, FUNG M K, et al. Simplified efficient warm white tandem organic light-emitting devices by ultrathin emitters using energy transfer from exciplexes[J]. Org. Electron., 2018, 63: 369-375.
FENG D X, DONG D, LIAN L, et al. High efficiency non-doped white organic light-emitting diodes based on blue exciplex emission[J]. Org. Electron., 2018, 56: 216-220.
ZHANG S, YAO J W, DAI Y F, et al. High efficiency and color quality undoped phosphorescent white organic light-emitting diodes based on simple ultrathin structure in exciplex[J]. Org. Electron., 2020, 85: 105821-1-7.
HUNG W Y, FANG G C, LIN S W, et al. The first tandem, all-exciplex-based WOLED[J]. Sci. Rep., 2014, 4: 5161-1-6.
LIAO X Q, AN K G, LI Y, et al. Blocking energy-loss pathways for phosphorescent organic light emitting devices with novel exciplex-forming host[J]. Dyes Pigm., 2020, 182: 108694-1-8.
ZHAOY P, ZHANG J, MIAO Y Q, et al. All-fluorescent white organic light-emitting diodes with EQE exceeding theoretical limit of 5% by incorporating a novel yellow fluorophor in co-doping forming blue exciplex[J]. Org. Electron., 2020, 83: 105746-1-8.
ZHANG H, WANG Z Q, GAO L, et al. Low efficiency roll-off and high color stability pure fluorescent white organic light-emitting diode based exciplex host[J]. RSC Adv., 2018, 8(2): 954-959.
WANG Z Q, LIU Z M, ZHANG H, et al. Highly efficient and spectra stable warm white organic light-emitting diodes by the application of exciplex as the excitons adjustment layer[J]. Org. Electron., 2018, 62: 157-162.
WANG L J, KOU Z Q, WANG B Q, et al. Realizing high efficiency/CRI/color stability in the hybrid white organic light emitting diode by manipulating exciton energy transfer[J]. Opt. Mater., 2021, 115: 111059.
LIAO X Q, AN K G, LI Y, et al. Exciplex interlayer switch surface charge effect on ultra-thin non-doping WOLEDs[J]. Mater. Today Commun., 2020, 25: 101413.
WANG J X, CHEN J S, QIAO X F, et al. Simple-structured phosphorescent warm white organic light-emitting diodes with high power efficiency and low efficiency roll-off[J]. ACS Appl. Mater. Interfaces, 2016, 8(16): 10093-10097.
YING S A, YAO J W, CHEN Y W, et al. High efficiency(~100 lm·W-1 hybrid WOLEDs by simply introducing ultrathin non-doped phosphorescent emitters in a blue exciplex host[J]. J. Mater. Chem. C, 2018, 6(26): 7070-7076.
付祥恩, 杨飞宇, 唐宇. 基于激基复合物的高显色指数白光有机发光二极管[J]. 激光与光电子学进展, 2020, 57(21): 212303-1-6.
FU X E, YANG F Y, TANG Y. White organic light-emitting diodes with high color-rendering index based on exciplex[J]. Laser Optoelectron. Prog., 2020, 57(21): 212303-1-6. (in Chinese)
LEE J H, CHENG S H, YOO S J, et al. An exciplex forming host for highly efficient blue organic light emitting diodes with low driving voltage[J]. Adv. Funct. Mater., 2015, 25(3): 361-366.
0
Views
232
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution