Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber
返回论文页
Synthesis and Properties of Materials|更新时间:2022-01-14
|
Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber
增强出版
Chinese Journal of LuminescenceVol. 43, Issue 1, Pages: 42-50(2022)
作者机构:
山东大学 晶体材料国家重点实验室,山东 济南 250100
作者简介:
基金信息:
National Natural Science Foundation of China(51502157;62105181);Key Research and Development Program of Shandong Province(2018CXGC0410);Young Scholars Program of Shandong University(2018WLJH66);Qingdao Postdoctoral Applied Research Project
Xiao-fei MA, Tao WANG, Jian ZHANG, et al. Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber. [J]. Chinese Journal of Luminescence 43(1):42-50(2022)
DOI:
Xiao-fei MA, Tao WANG, Jian ZHANG, et al. Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber. [J]. Chinese Journal of Luminescence 43(1):42-50(2022) DOI: 10.37188/CJL.20210332.
Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber增强出版
Single crystal fiber is a kind of functional crystal material with quasi-one-dimensional structure
combining the excellent physical and chemical properties of bulk crystal with the structural advantages of large specific surface area of traditional optical fiber materials
which makes it a potential laser gain medium. At present
the research on single crystal fiber laser mainly focuses on continuous-wave laser output
while the research on its pulsed laser performance is relatively few. With Yb∶LuAG single crystal fiber (SCF) prepared by micro-pull-down method(μ-PD) as the gain medium
a continuous-wave laser output of more than 4 W with a slope efficiency of 21.66% was obtained. The beam quality factor
M
2
is close to 1. On this basis
the linear optical properties of saturable absorber(SA) MoTe
2
were tested
and the nonlinear saturable absorption characteristics at 532 nm and 1 064 nm were verified. Finally
a passive
Q
-switched Yb∶LuAG single crystal fiber pulsed laser output with the highest single pulse energy of 3.39 μJ was realized. This work provides a reference for the application of Yb∶LuAG SCF in all-solid-state high-power continuous-wave and pulsed lasers.
关键词
单晶光纤Yb∶LuAG脉冲激光MoTe2被动调Q
Keywords
single crystal fiberYb∶LuAGpulsed laserMoTe2passive Q-switched
references
BERA S, NIE C D, SOSKIND M G, et al. Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated pedestal growth technique[J]. Appl. Opt., 2017, 56(35): 9649-9655.
CAI Y Q, XU B, ZHANG Y S, et al. High power and energy generation in a Nd∶YAG single-crystal fiber laser at 1 834 nm[J]. Photonics Res., 2019, 7(2): 162-166.
NIE C D, BERA S, HARRINGTON J A. Growth of single-crystal YAG fiber optics[J]. Opt. Express, 2016, 24(14): 15522-15527.
WANG J L, SONG Q S, SUN Y W, et al. High-performance Ho∶YAG single-crystal fiber laser in-band pumped by a Tm-doped all-fiber laser[J]. Opt. Lett., 2019, 44(2): 455-458.
WANG T, ZHANG J, ZHANG N, et al. The characteristics of high-quality Yb∶YAG single crystal fibers grown by a LHPG method and the effects of their discoloration[J]. RSC Adv., 2019, 9(39): 22567-22575.
BROWN D C, MCMILLEN C D, MOORE C, et al. Spectral properties of hydrothermally-grown Nd∶LuAG, Yb∶LuAG, and Yb∶Lu2O3 laser materials[J]. J. Lumin., 2014, 148: 26-32.
DONG J, UEDA K, KAMINSKII A A. Laser-diode pumped efficient Yb∶LuAG microchip lasers oscillating at 1 030 and 1 047 nm[J]. Laser Phys. Lett., 2010, 7(10): 726-733.
GE W Y, LIANG H X, MA J, et al. Wavelength-switchable mode-locked Yb∶LuAG laser between 1 031 nm and 1 046 nm[J]. Opt. Express, 2014, 22(3): 2423-2428.
BEIL K, FREDRICH-THORNTON S T, TELLKAMP F, et al. Thermal and laser properties of Yb∶LuAG for kW thin disk lasers[J]. Opt. Express, 2010, 18(20): 20712-20722.
DÉLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Opt. Lett., 2012, 37(14): 2898-2900.
WANG T, WANG H Y, ZHANG J, et al. Design and directional growth of (Mg1-xZnx)(Al1-yCry)2O4 single-crystal fibers for high-sensitivity and high-temperature sensing based on lattice doping engineering and acoustic anisotropy[J]. Adv. Funct. Mater., 2021, 31(42): 2103224.
LIU X F, GUO Q B, QIU J R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics[J]. Adv. Mater., 2017, 29(14): 1605886-1-29.
LIANG Y Y, ZHAO J, QIAO W C, et al. Passively Q-switched Er∶YAG laser at 1 645 nm utilizing a multilayer molybdenum ditelluride (MoTe2) saturable absorber[J]. Laser Phys. Lett., 2018, 15(9): 095801-1-5.
WANG M M, LI D W, LIU K, et al. Nonlinear optical imaging, precise layer thinning, and phase engineering in MoTe2 with femtosecond laser[J]. ACS Nano, 2020, 14(9): 11169-11177.
YAN B Z, ZHANG B T, NIE H K, et al. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2 saturable absorber[J]. Opt. Express, 2018, 26(14): 18505-18512.
YAN Z Y, LI T, ZHAO S Z, et al. MoTe2 saturable absorber for passively Q-switched Ho,Pr∶LiLuF4 laser at ~3 μm[J]. Opt. Laser Technol., 2018, 100: 261-264.
WANG A Y, ZHANG J, YE S, et al. Optimized growth and laser application of Yb∶LuAG single-crystal fibers by micro-pulling-down technique[J]. Crystals, 2021, 11(2): 78-1-10.
KASAMATSU T, SEKITA H, KUWANO Y. Temperature dependence and optimization of 970-nm diode-pumped Yb∶YAG and Yb∶LuAG lasers[J]. Appl. Opt., 1999, 38(24): 5149-5153.
GRIEBNER U, PETROV V, PETERMANN K, et al. Passively mode-locked Yb∶Lu2O3 laser[J]. Opt. Express, 2004, 12(14): 3125-3130.
MA C Y, WANG C, GAO B, et al. Recent progress in ultrafast lasers based on 2D materials as a saturable absorber[J]. Appl. Phys. Rev., 2019, 6(4): 041304.
MA Y J, TIAN K, DOU X D, et al. Passive Q-switching induced by few-layer MoTe2 in an Yb∶YCOB microchip laser[J]. Opt. Express, 2018, 26(19): 25147-25155.
TIAN K, LI Y H, YANG J N, et al. Passively Q-switched Yb∶KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber[J]. Appl. Phys. B, 2019, 125(2): 24-1-6.
LAN R J, ZHAO B, MU P H, et al. Passively Q-switched Yb∶Lu0.74Y0.23La0.01VO4 laser based on MoTe2 saturable absorber[J]. IEEE Access, 2019, 7: 153378-153381.
LI Y H, XU Y F, XU G Y, et al. Performance of an Yb∶LaCa4O(BO3)3 crystal laser at 1.03-1.04 μm passively Q-switched with 2D MoTe2 saturable absorber[J]. Infrared Phys. Technol., 2019, 99: 167-171.
Laser Welding and Packaging Technology of Three-dimensional Direct Plated Copper Ceramic Substrate
Research Progress and Prospect of 3 μm Band Er3+∶ZBLAN Fiber Laser
Related Author
Tao WANG
Jian ZHANG
Yan-ru YIN
Bai-tao ZHANG
Zhi-tai JIA
Xiao-fei MA
CEHN Mingxiang
PENG Yang
Related Institution
China State Key Lab of Crystal Materials, Shandong University
School of Mechanical Science and Engineering, Huazhong University of Science and Technology
School of Aerospace Engineering, Huazhong University of Science and Technology
Institute of Optoelectronic Materials and Devices, Hangzhou College of Optics and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China