1.山东大学 晶体材料国家重点实验室,山东 济南 250100
扫 描 看 全 文
Xiao-fei MA, Tao WANG, Jian ZHANG, et al. Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber. [J]. Chinese Journal of Luminescence 43(1):42-50(2022)
Xiao-fei MA, Tao WANG, Jian ZHANG, et al. Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber. [J]. Chinese Journal of Luminescence 43(1):42-50(2022) DOI: 10.37188/CJL.20210332.
单晶光纤是具有准一维结构的功能晶体材料,结合了体块单晶优异的物化性能和传统光纤材料比表面积大的结构优势,是一种极具潜力的激光增益介质。目前单晶光纤激光的研究主要集中于连续激光输出,关于脉冲激光性能的研究相对较少。我们采用微下拉法(μ-PD)制备的Yb∶LuAG单晶光纤(SCF)作为增益介质,获得了输出功率大于4 W、斜效率21.66%、光束质量因子,M,2,接近于1的连续激光输出。在此基础上,采用MoTe,2,作为可饱和吸收体,实现了Yb∶LuAG SCF最高单脉冲能量3.39 μJ的被动调,Q,脉冲激光输出。该工作为Yb∶LuAG SCF在全固态高功率连续和脉冲激光器中的应用提供了参考。
Single crystal fiber is a kind of functional crystal material with quasi-one-dimensional structure, combining the excellent physical and chemical properties of bulk crystal with the structural advantages of large specific surface area of traditional optical fiber materials, which makes it a potential laser gain medium. At present, the research on single crystal fiber laser mainly focuses on continuous-wave laser output, while the research on its pulsed laser performance is relatively few. With Yb∶LuAG single crystal fiber (SCF) prepared by micro-pull-down method(μ-PD) as the gain medium, a continuous-wave laser output of more than 4 W with a slope efficiency of 21.66% was obtained. The beam quality factor ,M,2, is close to 1. On this basis, the linear optical properties of saturable absorber(SA) MoTe,2, were tested, and the nonlinear saturable absorption characteristics at 532 nm and 1 064 nm were verified. Finally, a passive ,Q,-switched Yb∶LuAG single crystal fiber pulsed laser output with the highest single pulse energy of 3.39 μJ was realized. This work provides a reference for the application of Yb∶LuAG SCF in all-solid-state high-power continuous-wave and pulsed lasers.
单晶光纤Yb∶LuAG脉冲激光MoTe2被动调Q
single crystal fiberYb∶LuAGpulsed laserMoTe2passive Q-switched
BERA S, NIE C D, SOSKIND M G, et al. Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated pedestal growth technique[J]. Appl. Opt., 2017, 56(35): 9649-9655.
CAI Y Q, XU B, ZHANG Y S, et al. High power and energy generation in a Nd∶YAG single-crystal fiber laser at 1 834 nm[J]. Photonics Res., 2019, 7(2): 162-166.
NIE C D, BERA S, HARRINGTON J A. Growth of single-crystal YAG fiber optics[J]. Opt. Express, 2016, 24(14): 15522-15527.
WANG J L, SONG Q S, SUN Y W, et al. High-performance Ho∶YAG single-crystal fiber laser in-band pumped by a Tm-doped all-fiber laser[J]. Opt. Lett., 2019, 44(2): 455-458.
WANG T, ZHANG J, ZHANG N, et al. The characteristics of high-quality Yb∶YAG single crystal fibers grown by a LHPG method and the effects of their discoloration[J]. RSC Adv., 2019, 9(39): 22567-22575.
BROWN D C, MCMILLEN C D, MOORE C, et al. Spectral properties of hydrothermally-grown Nd∶LuAG, Yb∶LuAG, and Yb∶Lu2O3 laser materials[J]. J. Lumin., 2014, 148: 26-32.
DONG J, UEDA K, KAMINSKII A A. Laser-diode pumped efficient Yb∶LuAG microchip lasers oscillating at 1 030 and 1 047 nm[J]. Laser Phys. Lett., 2010, 7(10): 726-733.
GE W Y, LIANG H X, MA J, et al. Wavelength-switchable mode-locked Yb∶LuAG laser between 1 031 nm and 1 046 nm[J]. Opt. Express, 2014, 22(3): 2423-2428.
BEIL K, FREDRICH-THORNTON S T, TELLKAMP F, et al. Thermal and laser properties of Yb∶LuAG for kW thin disk lasers[J]. Opt. Express, 2010, 18(20): 20712-20722.
DÉLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Opt. Lett., 2012, 37(14): 2898-2900.
WANG T, WANG H Y, ZHANG J, et al. Design and directional growth of (Mg1-xZnx)(Al1-yCry)2O4 single-crystal fibers for high-sensitivity and high-temperature sensing based on lattice doping engineering and acoustic anisotropy[J]. Adv. Funct. Mater., 2021, 31(42): 2103224.
LIU X F, GUO Q B, QIU J R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics[J]. Adv. Mater., 2017, 29(14): 1605886-1-29.
LIANG Y Y, ZHAO J, QIAO W C, et al. Passively Q-switched Er∶YAG laser at 1 645 nm utilizing a multilayer molybdenum ditelluride (MoTe2) saturable absorber[J]. Laser Phys. Lett., 2018, 15(9): 095801-1-5.
WANG M M, LI D W, LIU K, et al. Nonlinear optical imaging, precise layer thinning, and phase engineering in MoTe2 with femtosecond laser[J]. ACS Nano, 2020, 14(9): 11169-11177.
YAN B Z, ZHANG B T, NIE H K, et al. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2 saturable absorber[J]. Opt. Express, 2018, 26(14): 18505-18512.
YAN Z Y, LI T, ZHAO S Z, et al. MoTe2 saturable absorber for passively Q-switched Ho,Pr∶LiLuF4 laser at ~3 μm[J]. Opt. Laser Technol., 2018, 100: 261-264.
WANG A Y, ZHANG J, YE S, et al. Optimized growth and laser application of Yb∶LuAG single-crystal fibers by micro-pulling-down technique[J]. Crystals, 2021, 11(2): 78-1-10.
KASAMATSU T, SEKITA H, KUWANO Y. Temperature dependence and optimization of 970-nm diode-pumped Yb∶YAG and Yb∶LuAG lasers[J]. Appl. Opt., 1999, 38(24): 5149-5153.
GRIEBNER U, PETROV V, PETERMANN K, et al. Passively mode-locked Yb∶Lu2O3 laser[J]. Opt. Express, 2004, 12(14): 3125-3130.
MA C Y, WANG C, GAO B, et al. Recent progress in ultrafast lasers based on 2D materials as a saturable absorber[J]. Appl. Phys. Rev., 2019, 6(4): 041304.
MA Y J, TIAN K, DOU X D, et al. Passive Q-switching induced by few-layer MoTe2 in an Yb∶YCOB microchip laser[J]. Opt. Express, 2018, 26(19): 25147-25155.
TIAN K, LI Y H, YANG J N, et al. Passively Q-switched Yb∶KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber[J]. Appl. Phys. B, 2019, 125(2): 24-1-6.
LAN R J, ZHAO B, MU P H, et al. Passively Q-switched Yb∶Lu0.74Y0.23La0.01VO4 laser based on MoTe2 saturable absorber[J]. IEEE Access, 2019, 7: 153378-153381.
LI Y H, XU Y F, XU G Y, et al. Performance of an Yb∶LaCa4O(BO3)3 crystal laser at 1.03-1.04 μm passively Q-switched with 2D MoTe2 saturable absorber[J]. Infrared Phys. Technol., 2019, 99: 167-171.
0
Views
73
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution