Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber
Synthesis and Properties of Materials|更新时间:2022-01-14
|
Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber
增强出版
Chinese Journal of LuminescenceVol. 43, Issue 1, Pages: 42-50(2022)
作者机构:
山东大学 晶体材料国家重点实验室,山东 济南 250100
作者简介:
基金信息:
National Natural Science Foundation of China(51502157;62105181);Key Research and Development Program of Shandong Province(2018CXGC0410);Young Scholars Program of Shandong University(2018WLJH66);Qingdao Postdoctoral Applied Research Project
XIAO-FEI MA, TAO WANG, JIAN ZHANG, et al. Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber. [J]. Chinese journal of luminescence, 2022, 43(1): 42-50.
DOI:
XIAO-FEI MA, TAO WANG, JIAN ZHANG, et al. Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber. [J]. Chinese journal of luminescence, 2022, 43(1): 42-50. DOI: 10.37188/CJL.20210332.
Continuous-wave and Pulsed Laser Performance of Yb∶LuAG Single Crystal Fiber增强出版
Single crystal fiber is a kind of functional crystal material with quasi-one-dimensional structure
combining the excellent physical and chemical properties of bulk crystal with the structural advantages of large specific surface area of traditional optical fiber materials
which makes it a potential laser gain medium. At present
the research on single crystal fiber laser mainly focuses on continuous-wave laser output
while the research on its pulsed laser performance is relatively few. With Yb∶LuAG single crystal fiber (SCF) prepared by micro-pull-down method(μ-PD) as the gain medium
a continuous-wave laser output of more than 4 W with a slope efficiency of 21.66% was obtained. The beam quality factor
M
2
is close to 1. On this basis
the linear optical properties of saturable absorber(SA) MoTe
2
were tested
and the nonlinear saturable absorption characteristics at 532 nm and 1 064 nm were verified. Finally
a passive
Q
-switched Yb∶LuAG single crystal fiber pulsed laser output with the highest single pulse energy of 3.39 μJ was realized. This work provides a reference for the application of Yb∶LuAG SCF in all-solid-state high-power continuous-wave and pulsed lasers.
关键词
单晶光纤Yb∶LuAG脉冲激光MoTe2被动调Q
Keywords
single crystal fiberYb∶LuAGpulsed laserMoTe2passive Q-switched
references
BERA S, NIE C D, SOSKIND M G, et al. Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated pedestal growth technique[J]. Appl. Opt., 2017, 56(35): 9649-9655.
CAI Y Q, XU B, ZHANG Y S, et al. High power and energy generation in a Nd∶YAG single-crystal fiber laser at 1 834 nm[J]. Photonics Res., 2019, 7(2): 162-166.
NIE C D, BERA S, HARRINGTON J A. Growth of single-crystal YAG fiber optics[J]. Opt. Express, 2016, 24(14): 15522-15527.
WANG J L, SONG Q S, SUN Y W, et al. High-performance Ho∶YAG single-crystal fiber laser in-band pumped by a Tm-doped all-fiber laser[J]. Opt. Lett., 2019, 44(2): 455-458.
WANG T, ZHANG J, ZHANG N, et al. The characteristics of high-quality Yb∶YAG single crystal fibers grown by a LHPG method and the effects of their discoloration[J]. RSC Adv., 2019, 9(39): 22567-22575.
BROWN D C, MCMILLEN C D, MOORE C, et al. Spectral properties of hydrothermally-grown Nd∶LuAG, Yb∶LuAG, and Yb∶Lu2O3 laser materials[J]. J. Lumin., 2014, 148: 26-32.
DONG J, UEDA K, KAMINSKII A A. Laser-diode pumped efficient Yb∶LuAG microchip lasers oscillating at 1 030 and 1 047 nm[J]. Laser Phys. Lett., 2010, 7(10): 726-733.
GE W Y, LIANG H X, MA J, et al. Wavelength-switchable mode-locked Yb∶LuAG laser between 1 031 nm and 1 046 nm[J]. Opt. Express, 2014, 22(3): 2423-2428.
BEIL K, FREDRICH-THORNTON S T, TELLKAMP F, et al. Thermal and laser properties of Yb∶LuAG for kW thin disk lasers[J]. Opt. Express, 2010, 18(20): 20712-20722.
DÉLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Opt. Lett., 2012, 37(14): 2898-2900.
WANG T, WANG H Y, ZHANG J, et al. Design and directional growth of (Mg1-xZnx)(Al1-yCry)2O4 single-crystal fibers for high-sensitivity and high-temperature sensing based on lattice doping engineering and acoustic anisotropy[J]. Adv. Funct. Mater., 2021, 31(42): 2103224.
LIU X F, GUO Q B, QIU J R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics[J]. Adv. Mater., 2017, 29(14): 1605886-1-29.
LIANG Y Y, ZHAO J, QIAO W C, et al. Passively Q-switched Er∶YAG laser at 1 645 nm utilizing a multilayer molybdenum ditelluride (MoTe2) saturable absorber[J]. Laser Phys. Lett., 2018, 15(9): 095801-1-5.
WANG M M, LI D W, LIU K, et al. Nonlinear optical imaging, precise layer thinning, and phase engineering in MoTe2 with femtosecond laser[J]. ACS Nano, 2020, 14(9): 11169-11177.
YAN B Z, ZHANG B T, NIE H K, et al. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2 saturable absorber[J]. Opt. Express, 2018, 26(14): 18505-18512.
YAN Z Y, LI T, ZHAO S Z, et al. MoTe2 saturable absorber for passively Q-switched Ho,Pr∶LiLuF4 laser at ~3 μm[J]. Opt. Laser Technol., 2018, 100: 261-264.
WANG A Y, ZHANG J, YE S, et al. Optimized growth and laser application of Yb∶LuAG single-crystal fibers by micro-pulling-down technique[J]. Crystals, 2021, 11(2): 78-1-10.
KASAMATSU T, SEKITA H, KUWANO Y. Temperature dependence and optimization of 970-nm diode-pumped Yb∶YAG and Yb∶LuAG lasers[J]. Appl. Opt., 1999, 38(24): 5149-5153.
GRIEBNER U, PETROV V, PETERMANN K, et al. Passively mode-locked Yb∶Lu2O3 laser[J]. Opt. Express, 2004, 12(14): 3125-3130.
MA C Y, WANG C, GAO B, et al. Recent progress in ultrafast lasers based on 2D materials as a saturable absorber[J]. Appl. Phys. Rev., 2019, 6(4): 041304.
MA Y J, TIAN K, DOU X D, et al. Passive Q-switching induced by few-layer MoTe2 in an Yb∶YCOB microchip laser[J]. Opt. Express, 2018, 26(19): 25147-25155.
TIAN K, LI Y H, YANG J N, et al. Passively Q-switched Yb∶KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber[J]. Appl. Phys. B, 2019, 125(2): 24-1-6.
LAN R J, ZHAO B, MU P H, et al. Passively Q-switched Yb∶Lu0.74Y0.23La0.01VO4 laser based on MoTe2 saturable absorber[J]. IEEE Access, 2019, 7: 153378-153381.
LI Y H, XU Y F, XU G Y, et al. Performance of an Yb∶LaCa4O(BO3)3 crystal laser at 1.03-1.04 μm passively Q-switched with 2D MoTe2 saturable absorber[J]. Infrared Phys. Technol., 2019, 99: 167-171.