浏览全部资源
扫码关注微信
昆明理工大学 材料科学与工程学院,云南 昆明 650093
Published:01 April 2022,
Received:14 October 2021,
Revised:30 October 2021,
移动端阅览
XUE BAI, ZAN XU, YING-ZHU ZI, et al. Reversible Fluorescence Modulation and Applications Based on Chromic Effect in Inorganic Rare-earth Luminescent Materials. [J]. Chinese journal of luminescence, 2022, 43(4): 463-477.
XUE BAI, ZAN XU, YING-ZHU ZI, et al. Reversible Fluorescence Modulation and Applications Based on Chromic Effect in Inorganic Rare-earth Luminescent Materials. [J]. Chinese journal of luminescence, 2022, 43(4): 463-477. DOI: 10.37188/CJL.20210326.
无机稀土发光材料在照明、显示、激光和生物医学等领域有着极其广泛的应用。对荧光性能的调控有利于拓展其在温度传感、防伪识别、光开关、光存储等领域的应用。传统的荧光调控方式包括设计核壳结构、改变材料成分控制晶体场、改变稀土离子的掺杂类型或浓度从而控制能量传递等。然而,这些调控方式难以实现荧光性能的可逆调控,限制了其实际应用。对比传统的调控方式,材料在电场、热场或光场等外场刺激下可产生变色效应,通过变色效应可以实现对其荧光性能的可逆调控从而扩展其应用。本文主要综述了在电场、热场和光场刺激下,无机稀土发光材料的变色效应对其荧光性能的可逆调控及应用。
Inorganic rare-earth luminescent materials are widely used in lighting
display
laser and biomedicine. The fluorescence modulation is beneficial to expand the applications in temperature sensing
anti-counterfeiting
optical switch
optical storage
et al
. However
the traditional fluorescence modulation methods such as designing the core and shell structure
changing the material composition to control the crystal field
and changing the doping type or concentration of rare earth ions to control the energy transfer are difficult to achieve reversible modulation of fluorescence properties
limiting their practical applications. Compared with these traditional methods
the color of materials can change under external stimulation
such as electric field
thermal field and light field. The reversible fluorescence modulation based on the chromic effect could expand the applications. In this paper
the reversible modulation based on chromic effect under electric field
thermal field or light field stimulation in inorganic rare-earth luminescent materials and their applications were mainly reviewed.
无机稀土发光材料荧光调控电致变色热致变色光致变色
inorganic rare-earth luminescent materialsfluorescence modulationelectrochromicthermochromicphotochromic
JOOS J J, VAN DER HEGGEN D, MARTIN L I D J, et al. Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence [J]. Nat. Commun., 2020, 11(1):3647-1-11.
NYK M, KUMAR R, OHULCHANSKYY T Y, et al. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors [J]. Nano Lett., 2008, 8(11):3834-3838.
CHEN X, JIN L M, KONG W, et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing [J]. Nat. Commun., 2016, 7:10304-1-6.
YUAN M H, FAN H H, LI H, et al. Controlling the two-photon-induced photon cascade emission in a Gd3+/Tb3+-codoped glass for multicolor display [J]. Sci. Rep., 2016, 6(1):21091-1-8.
HAN Y D, LI H Y, WANG Y B, et al. Upconversion modulation through pulsed laser excitation for anti-counterfeiting [J]. Sci. Rep., 2017, 7(1):1320-1-8.
CAO C, LI G S, XIE Y, et al. Er3+ doped core-shell nanoparticles with large enhanced near-infrared luminescence for in vivo imaging [J]. Inorg. Chem. Commun., 2021, 126:108468.
SONG P J, QIAO B, SONG D D, et al. Modifying the crystal field of CsPbCl3∶Mn2+ nanocrystals by co-doping to enhance its red emission by a hundredfold [J]. ACS Appl. Mater. Interfaces, 2020, 12(27):30711-30719.
SUO H, GUO C F, LI T. Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21∶Er3+/Yb3+ [J]. J. Phys. Chem. C, 2016, 120(5):2914-2924.
KAMAL C S, RAO T K V, SAMUEL T, et al. Blue to magenta tunable luminescence from LaGaO3∶Bi3+,Cr3+ doped phosphors for field emission display applications [J]. RSC Adv., 2017, 7(71):44915-44922.
SHAO B, YANG Z W, WANG Y D, et al. Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4∶Yb3+,Er3+ nanoparticles [J]. ACS Appl. Mater. Interfaces, 2015, 7(45):25211-25218.
YANG Z W, ZHU K, SONG Z G, et al. Photonic band gap and upconversion emission properties of Yb,Er co-doped lead lanthanum titanate inverse opal photonic crystals [J]. Appl. Phys. A, 2011, 103(4):995-999.
HUANG F, YANG T, WANG S X, et al. Temperature sensitive cross relaxation between Er3+ ions in laminated hosts:a novel mechanism for thermochromic upconversion and high performance thermometry [J]. J. Mater. Chem. C, 2018, 6(45):12364-12370.
LIN J F, LU Q L, WU X, et al. In situ boost and reversible modulation of dual-mode photoluminescence under an electric field in a tape-casting-based Er-doped K0.5Na0.5NbO3 laminar ceramic [J]. J. Mater. Chem. C, 2019, 7(26):7885-7892.
QIU J R, MIURA K, SUZUKI T, et al. Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser [J]. Appl. Phys. Lett., 1999, 74(1):10-12.
洪广言. 稀土发光材料的研究进展 [J]. 人工晶体学报, 2015, 44(10):2641-2651.
HONG G Y. Research progress of rare earth luminescent materials [J]. J. Synthetic Cryst., 2015, 44(10):2641-2651. (in Chinese)
张中太, 张俊英. 无机光致发光材料及应用 [M]. 第2版. 化学工业出版社, 2011.
ZHANG Z T, ZHANG J Y. Inorganic Photoluminescent Materials and Applications [M]. 2nd ed. Beijing: Chemical Industry Press, 2011. (in Chinese)
BI J Q, WEI T, SHEN L H, et al. Tunable upconversion luminescence in new Ho3+/Yb3+-doped SrBi4Ti4O15 photochromic ceramics for switching application [J]. J. Am. Ceram. Soc., 2021, 104(4):1785-1796.
LV Y, JIN Y H, LI Z Z, et al. Reversible photoluminescence switching in photochromic material Sr6Ca4(PO4)6F2∶Eu2+ and the modified performance by trap engineering via Ln3+ (Ln=La,Y,Gd,Lu) co-doping for erasable optical data storage [J]. J. Mater. Chem. C, 2020, 8(19):6403-6412.
ZHANG R T, JIN Y H, YUAN L F, et al. Photochromism of Sm3+-doped perovskite oxide:ultrahigh-contrast optical switching and erasable optical recording [J]. J. Lumin., 2021, 233:117922.
WARWICK M E A, BINIONS R. Advances in thermochromic vanadium dioxide films [J]. J. Mater. Chem. A, 2014, 2(10):3275-3292.
SABEA H A, NOREL L, GALANGAU O, et al. Efficient photomodulation of visible Eu(Ⅲ) and invisible Yb(Ⅲ) luminescences using DTE photochromic ligands for optical encryption [J]. Adv. Funct. Mater., 2020, 30(30):2002943-1-8.
SU X J, LI H Q, LAI X J, et al. Bioinspired superhydrophobic thermochromic films with robust healability [J]. ACS Appl. Mater. Interfaces, 2020, 12(12):14578-14587.
YANG Z T, DU J R, MARTIN L I D J, et al. Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics [J]. J. Eur. Ceram. Soc., 2021, 41(3):1925-1933.
ROSSEINSKY D R, MORTIMER R J. Electrochromic systems and the prospects for devices [J]. Adv. Mater., 2001, 13(11):783-793.
NIKLASSON G A, GRANQVIST C G. Electrochromics for smart windows:thin films of tungsten oxide and nickel oxide,and devices based on these [J]. J. Mater. Chem., 2007, 17(2):127-156.
DEB S K. A novel electrophotographic system [J]. Appl. Opt., 1969, 8(S1):192-195.
YAO D D, RANI R A, O’MULLANE A P, et al. Enhanced coloration efficiency for electrochromic devices based on anodized Nb2O5/electrodeposited MoO3 binary systems [J]. J. Phys. Chem. C, 2014, 118(20):10867-10873.
VU T D, CHEN Z, ZENG X T, et al. Physical vapour deposition of vanadium dioxide for thermochromic smart window applications [J]. J. Mater. Chem. C, 2019, 7(8):2121-2145.
ZHOU J D, GAO Y F, ZHANG Z T, et al. VO2 thermochromic smart window for energy savings and generation [J]. Sci. Rep., 2013, 3:3029-1-5.
WANG S F, FAN W R, LIU Z C, et al. Advances on tungsten oxide based photochromic materials:strategies to improve their photochromic properties [J]. J. Mater. Chem. C, 2018, 6(2):191-212.
TAKATOHI U E, BITTENCOURT D R S, WATANABE S. Small-angle X-ray scattering study on growth of AgCl crystallites in photochromic glasses [J]. J. Appl. Cryst., 1997, 30(5):628-632.
HE T, YAO J N. Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates [J]. Prog. Mater. Sci., 2006, 51(6):810-879.
REN Y T, YANG Z W, WANG Y H, et al. Reversible multiplexing for optical information recording,erasing,and reading-out in photochromic BaMgSiO4∶Bi3+ luminescence ceramics [J]. Sci. China Mater., 2020, 63(4):582-592.
ZHANG Y Y, LUO L H, LI K X, et al. Reversible up-conversion luminescence modulation based on UV-VIS light-controlled photochromism in Er3+ doped Sr2SnO4 [J]. J. Mater. Chem. C, 2018, 6(48):13148-13156.
ZHANG Q W, ZHANG Y, SUN H Q, et al. Photoluminescence,photochromism,and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics [J]. J. Eur. Ceram. Soc., 2017, 37(3):955-966.
ZHANG Y, LIU J, SUN H Q, et al. Reversible luminescence modulation of Ho-doped K0.5Na0.5NbO3 piezoelectrics with high luminescence contrast [J]. J. Am. Ceram. Soc., 2018, 101(6):2305-2312.
WANG J Q, BELL J M, SKRYABIN I L. The kinetic behaviour of ion transport in WO3 based films produced by sputter and sol-gel deposition:Part I. The simulation model [J]. Sol. Energy Mater. Solar Cells, 1999, 59(3):167-183.
REN Y T, YANG Z W, LI M J, et al. Reversible upconversion luminescence modification based on photochromism in BaMgSiO4∶Yb3+,Tb3+ ceramics for anti-counterfeiting applications [J]. Adv. Opt. Mater., 2019, 7(15):1900213-1-12.
BREZESINSKI T, ROHLFING D F, SALLARD S, et al. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance [J]. Small, 2006, 2(10):1203-1211.
GRANQVIST C G. Electrochromism and smart window design [J]. Solid State Ionics, 1992, 53-56:479-489.
BANGE K, GAMBKE T. Electrochromic materials for optical switching devices [J]. Adv. Mater., 1990, 2(1):10-16.
SHEN L Y, ZHENG J M, XU C Y. Enhanced electrochromic switches and tunable green fluorescence based on terbium ion doped WO3 films [J]. Nanoscale, 2019, 11(47):23049-23057.
ZHAN Y H, YANG Z W, XU Z, et al. Electrochromism induced reversible upconversion luminescence modulation of WO3∶Yb3+,Er3+ inverse opals for optical storage application [J]. Chem. Eng. J., 2020, 394:124967-1-9.
LI M J, YANG Z W, REN Y T, et al. Reversible modulated upconversion luminescence of MoO3∶Yb3+,Er3+ thermochromic phosphor for switching devices [J]. Inorg. Chem., 2019, 58(10):6950-6958.
RUAN J F, YANG Z W, HUANG A J, et al. Thermomchromic reaction-induced reversible upconversion emission modulation for switching devices and tunable upconversion emission based on defect engineering of WO3∶Yb3+,Er3+ phosphor [J]. ACS Appl. Mater. Interfaces, 2018, 10(17):14941-14947.
NISHIO S, KAKIHANA M, EBA H, et al. “Doughnut-shaped” coloration of V2O5 upon laser irradiation:another evidence of visible light photochromism of V2O5 [J]. Jpn. J. Appl. Phys., 2003, 42(9R):5670-5671.
NISHIO S, KAKIHANA M. Evidence for visible light photochromism of V2O5 [J]. Chem. Mater., 2002, 14(9):3730-3733.
RUAN J F, YANG Z W, WEN Y G, et al. Laser induced thermochromism and reversible upconversion emission modulation of a novel WO3∶Yb3+,Er3+ ceramic:dual-modal fingerprint acquisition application [J]. Chem. Eng. J., 2020, 383:123180-1-8.
FERNÁNDEZ-ACEBES A, LEHN J M. Optical switching and fluorescence modulation in photochromic metal complexes [J]. Adv. Mater., 1998, 10(18):1519-1522.
FERNÁNDEZ-ACEBES A, LEHN J M. Optical switching and fluorescence modulation properties of photochromic metal complexes derived from dithienylethene ligands [J]. Chem. Eur. J., 1999, 5(11):3285-3292.
AKIYAMA M. Blue-green light photochromism in europium doped BaMgSiO4 [J]. Appl. Phys. Lett., 2010, 97(18):181905-1-3.
KAMIMURA S, YAMADA H, XU C N. Purple photochromism in Sr2SnO4∶Eu3+ with layered perovskite-related structure [J]. Appl. Phys. Lett., 2013, 102(3):031110-1-4.
ZHANG Q W, SUN H Q, LI H, et al. Reversible photoresponsive switching in Bi2.5Na0.5Nb2O9-based luminescent ferroelectrics [J]. Chem. Commun., 2015, 51(91):16316-16319.
SUN H Q, LI X F, ZHU Y, et al. Achieving multicolor emission readout and tunable photoswitching via multiplexing of dual lanthanides in ferroelectric oxides [J]. J. Mater. Chem. C, 2019, 7(19):5782-5791.
ZHANG Q W, ZHENG X W, SUN H Q, et al. Dual-mode luminescence modulation upon visible-light-driven photochromism with high contrast for inorganic luminescence ferroelectrics [J]. ACS Appl. Mater. Interfaces, 2016, 8(7):4789-4794.
WANG H J, LIN J F, DENG B Y, et al. Reversible multi-mode modulations of optical behavior in photochromic-translucent Nd-doped K0.5Na0.5NbO3 ceramic [J]. J. Mater. Chem. C, 2020, 8(7):2343-2352.
ZHANG Q, TANG J, DU P, et al. Reversible and color controllable emissions in Er3+/Pr3+-codoped K0.5Na0.5NbO3 ceramics with splendid photochromic properties for anti-counterfeiting applications [J]. J. Eur. Ceram. Soc., 2021, 41(3):1904-1916.
CAO S Y, ZHU J T, CHEN Q, et al. Exploration about superior anti-counterfeiting ability of Sm3+ doped KSr2Nb5O15 photochromic ceramics:origin and atomic-scale mechanism [J]. J. Materiomics, 2022, 8(1):38-46.
CAO S Y, CHEN Q, LI Y P, et al. Novel strategy for the enhancement of anti-counterfeiting ability of photochromic ceramics:Sm3+ doped KSr2Nb5O15 textured ceramics with anisotropic luminescence modulation behavior [J]. J. Eur. Ceram. Soc., 2021, 41(9):4924-4933.
WEI T, JIA B, SHEN L H, et al. Reversible upconversion modulation in new photochromic SrBi2Nb2O9 based ceramics for optical storage and anti-counterfeiting applications [J]. J. Eur. Ceram. Soc., 2020, 40(12):4153-4163.
TANG J, MU Y X, DU P, et al. Luminescence modulation of the Eu3+ doped Srn+1Snn http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=26724349&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=26724342&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=26724351&type= (n=1,2,5,∞) ceramics based on photochromism and its application in anti-counterfeiting technology [J]. Ceram. Inter., 2020, 46(8):11962-11969.
BAI X, CUN Y K, XU Z, et al. Multiple Anti-Counterfeiting and optical storage of reversible dual-mode luminescence modification in photochromic CaWO4∶Yb3+,Er3+,Bi3+ phosphor [J]. Chem. Eng. J., 2022, 429:132333-1-9.
PARTHENOPOULOS D A, RENTZEPIS P M. Three-dimensional optical storage memory [J]. Science, 1989, 245(4920):843-845.
ZHANG J Y, GECEVIČUS M, BERESNA M, et al. Seemingly unlimited lifetime data storage in nanostructured glass [J]. Phys. Rev. Lett., 2014, 112(3):033901-1-5.
ZHANG Q W, ZHANG Y, SUN H Q, et al. Tunable luminescence contrast of Na0.5Bi4.5Ti4O15∶Re(Re=Sm,Pr,Er) photochromics by controlling the excitation energy of luminescent centers [J]. ACS Appl. Mater. Interfaces, 2016, 8(50):34581-34589.
ZHANG Q Q, LIU J, SUN H Q, et al. Luminescence photoswitching of Ho-doped Na0.5Bi2.5Nb2O9 ferroelectrics:the luminescence readout process [J]. J. Mater. Chem. C, 2017, 5(4):807-816.
ZHANG Q W, YUE S S, SUN H Q, et al. Nondestructive up-conversion readout in Er/Yb co-doped Na0.5Bi2.5Nb2O9-based optical storage materials for optical data storage device applications [J]. J. Mater. Chem. C, 2017, 5(15):3838-3847.
SUN H Q, ZHANG Y, LIU J, et al. Reversible upconversion switching for Ho/Yb codoped (K,Na)NbO3 ceramics with excellent luminescence readout capability [J]. J. Am. Ceram. Soc., 2018, 101(12):5659-5674.
BAI X, YANG Z W, ZHAN Y H, et al. Novel strategy for designing photochromic ceramic:reversible upconversion luminescence modification and optical information storage application in the PbWO4∶Yb3+,Er3+ photochromic ceramic [J]. ACS Appl. Mater. Interfaces, 2020, 12(19):21936-21943.
CHEN H S, DONG Z G, CHEN W W, et al. Flexible and rewritable non-volatile photomemory based on inorganic lanthanide-doped photochromic thin films [J]. Adv. Opt. Mater., 2020, 8(16):1902125-1-7.
WEI T, YANG F M, JIA B, et al. Reversible photoluminescence modulation in praseodymium-doped bismuth titanate ceramics for information storage based on photochromic reaction [J]. Ceram. Int., 2020, 46(11):18507-18517.
ZHU Y, SUN H Q, JIA Q N, et al. Site-selective occupancy of Eu2+ toward high luminescence switching contrast in BaMgSiO4-based photochromic materials [J]. Adv. Opt. Mater., 2021, 9(6):2001626-1-10.
YANG Z T, DU J R, MARTIN L I D J, et al. Designing photochromic materials with large luminescence modulation and strong photochromic efficiency for dual-mode rewritable optical storage [J]. Adv. Opt. Mater., 2021, 9(20):2100669.
YANG Z T, HU J Q, MARTIN L I D J, et al. Realizing nondestructive luminescence readout in photochromic ceramics via deep ultraviolet excitation for optical information storage [J]. J. Mater. Chem. C, 2021, 9(39):14012-14020.
TANG J, DU P, LI W P, et al. The integration of diverse fluorescence performances of Sr2-xSnO4∶xSm3+ ceramics with an infinite luminescence modulation ratio [J]. Chem. Eng. J., 2021, 410:128287.
HU Z, HUANG X J, YANG Z W, et al. Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium [J]. Light:Sci. Appl., 2021, 10:140-1-9.
ZHANG Z, GUO L J, SUN H Q, et al. Rare earth orthoniobate photochromics with self-activated upconversion emissions for high-performance optical storage applications [J]. J. Mater. Chem. C, 2021, 9(39):13841-13850.
0
Views
995
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution