浏览全部资源
扫码关注微信
长春理工大学 高功率半导体激光国家重点实验室,吉林 长春 130022
Published:2021-12,
Received:29 September 2021,
Revised:09 October 2021,
扫 描 看 全 文
Rui-dong LI, Yong-gang ZOU, Kun TIAN, et al. Grating Structure and Coupling Characteristics of Laterally-coupled Distributed Feedback Semiconductor Lasers. [J]. Chinese Journal of Luminescence 42(12):1921-1927(2021)
Rui-dong LI, Yong-gang ZOU, Kun TIAN, et al. Grating Structure and Coupling Characteristics of Laterally-coupled Distributed Feedback Semiconductor Lasers. [J]. Chinese Journal of Luminescence 42(12):1921-1927(2021) DOI: 10.37188/CJL.20210314.
耦合系数是评价分布反馈(DFB)半导体激光器光栅性能的重要参数。本文基于耦合波理论,结合数值模拟,研究了侧向耦合表面光栅结构参数对其耦合特性的影响。与矩形光栅侧向耦合脊波导结构对比,研究了对称梯形、错位梯形、对称结形、错位结形、双对称梯形和双对称结形六种特殊侧向微结构光栅,通过改变光栅侧壁纵向倾角、调整光栅的光学限制因子等途径,有效地实现了光栅的耦合系数调控。模拟分析了脊波导特殊侧向微结构光栅的占空比、脊宽、光栅侧向宽度等结构参数对耦合系数的影响,发现合理的结构参数能够有效地缓解耦合系数的波动,有助于减少工艺误差对耦合系数的影响。本工作为后续光栅结构设计与制备提供了理论依据。
Coupling coefficient is an important parameter for evaluating the grating performance of distributed feedback(DFB) semiconductor lasers. In this paper
based on the coupled-wave theory and combined with numerical simulation
the effect of the structural parameters of the laterally-coupled surface grating on their coupling characteristics is investigated. In contrast to the laterally-coupled ridge-waveguide structure of rectangular gratings
six special lateral microstructure gratings
namely
symmetric trapezoid
misaligned trapezoid
symmetric junction
misaligned junction
bisymmetric trapezoid and bisymmetric junction
have been studied to effectively achieve the coupling coefficient regulation of gratings by changing the longitudinal inclination angle of the grating sidewalls and adjusting the optical confinement factor of the grating. The effects of structural parameters such as duty cycle
ridge width and lateral width of the grating on the coupling coefficient of the special lateral microstructure grating of ridge-waveguide were simulated and analyzed
and it was found that reasonable structural parameters can effectively mitigate the fluctuation of the coupling coefficient and help reduce the effect of process errors on the coupling coefficient. The work in this paper provides a theoretical basis for the design and preparation of subsequent grating structures.
布拉格光栅耦合系数侧向耦合分布反馈
Bragg gratingcoupling coefficientlaterally-coupleddistributed feedback
LIU S P, WU H, SHI Y C, et al. High-power single-longitudinal-mode DFB semiconductor laser based on sampled Moiré grating[J]. IEEE Photon. Technol. Lett., 2019, 31(10):751-754.
郎兴凯, 贾鹏, 陈泳屹, 等. 窄线宽半导体激光器研究进展[J]. 中国科学:信息科学, 2019, 49(6):649-662.
LANG X K, JIA P, CHEN Y Y, et al. Advances in narrow linewidth diode lasers[J]. Scient. Sinica Inf., 2019, 49(6):649-662. (in Chinese)
张俊, 陈泳屹, 秦莉, 等. 高功率、高光束质量半导体激光器研究进展[J]. 科学通报, 2017, 62(32):3719-3728.
ZHANG J, CHEN Y Y, QIN L, et al. Advances in high power high beam quality diode lasers[J]. Chin. Sci. Bull., 2017, 62(32):3719-3728. (in Chinese)
邱橙, 陈泳屹, 高峰, 等. 一种结合增益耦合分布反馈光栅的多模干涉波导半导体激光器的研制[J]. 物理学报, 2019, 68(16):164204-1-10.
QIU C, CHEN Y Y, GAO F, et al. Design of a multimode interference waveguide semiconductor laser combining gain coupled distributed feedback grating[J]. Acta Phys. Sinica, 2019, 68(16):164204-1-10. (in Chinese)
AKIBA S, UTAKA K, SAKAI K, et al. Distributed feedback InGaAsP/InP lasers with window region emitting at 1.5 μm range[J]. IEEE J. Quantum Electron., 1983, 19(6):1052-1056.
高峰. 周期性电注入增益耦合分布反馈半导体激光器的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2018.
GAO F. Study of Gain-coupled Distributed Feedback Semiconductor Lasers based on Periodic Injection Current[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences, 2018. (in Chinese)
RADZIUNAS M, HASLER K H, SUMPF B, et al. Mode transitions in distributed Bragg reflector semiconductor lasers:experiments,simulations and analysis[J]. J. Phys. B At. Mol. Opt. Phys., 2011, 44(10):105401-1-14.
UUSITALO T, VIRTANEN H, DUMITRESCU M. Transverse structure optimization of distributed feedback and distributed Bragg reflector lasers with surface gratings[J]. Opt. Quantum Electron., 2017, 49(6):206-1-11.
HOFSTETTER D, ROMANO L T, PAOLI T L, et al. Realization of a complex-coupled InGaN/GaN-based optically pumped multiple-quantum-well distributed-feedback laser[J]. Appl. Phys. Lett., 2000, 76(17):2337-2339.
RUAN C K, CHEN Y Y, GAO F, et al. Gain-coupled 770 nm DFB semiconductor laser based on surface grating[J]. Opt. Commun., 2021, 479:126377-1-5.
LIU X, CHEN Y Y, ZENG Y G, et al. Tunable DFB laser diode based on high-order surface isolation grooves working at 905 nm[J]. Opt. Commun., 2021, 481:126528-1-5.
HOU L P, HAJI M, AKBAR J, et al. Narrow linewidth laterally coupled 1.55 μm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier[J]. Opt. Lett., 2012, 37(21):4525-4527.
FENG T, HOSODA T, SHTERENGAS L, et al. Laterally coupled distributed feedback type-Ⅰ quantum well cascade diode lasers emitting near 3.22 μm[J]. Appl. Opt., 2017, 56(31):H74-H80.
LI A K, WANG J, SUN C Z, et al. 1.3 μm 10-wavelength laterally coupled distributed feedback laser array with high-duty-ratio gratings[J]. Phys. Status Solidi, 2019, 216(1):1800490-1-3.
ROBADEY J, GOURGON C, GAUD E, et al. CW second-order complex coupled DFB lasers with low threshold current density and high monomode stability[J]. Electron. Lett., 1999, 35(24):2119-2120.
叶淑娟, 秦莉, 戚晓东, 等. 二阶光栅分布反馈半导体激光器的出光特性[J]. 中国激光, 2010, 37(9):2371-2375.
YE S J, QIN L, QI X D, et al. Emission characteristics of second-order distributed feedback semiconductor lasers[J]. Chin. J. Lasers, 2010, 37(9):2371-2375. (in Chinese)
STREIFER W, SCIFRES D, BURNHAM R. Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers[J]. IEEE J. Quantum Electron., 1975, 11(11):867-873.
AGRAWAL G P, DUTTA N K. Semiconductor Lasers[M]. 2nd ed. New York: Van Nostrand Reinhold, 1993.
LAAKSO A I, KARINEN J, DUMITRESCU M. Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings[J]. Phys. Simulat. Optoelectr. Dev. ⅪⅩ, 2011, 7933:79332K.
AZADEH M. Semiconductor Lasers[M]. Boston, MA, USA: Springer, 2009.
姚刚, 石文兰. ICP技术在化合物半导体器件制备中的应用[J]. 半导体技术, 2007, 32(6):474-477.
YAO G, SHI W L. Application of ICP etching in the fabrication of compound semiconductor device[J]. Semi. Technol., 2007, 32(6):474-477. (in Chinese)
0
Views
179
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution