浏览全部资源
扫码关注微信
1.山东大学材料科学与工程学院 材料液固结构演变与加工教育部重点实验室,山东 济南 250061
2.南昌大学 材料科学与工程学院,江西 南昌 330031
Published:2021-12,
Received:13 September 2021,
Revised:30 September 2021,
移动端阅览
SHUAI HUANG, JIN-DI WANG, YU YAN, et al. Crystal Site Engineering in Sr2LiSiO4F Enabling Mixed-valent Europium Toward Ratiometric Temperature Sensing. [J]. Chinese journal of luminescence, 2021, 42(12): 1829-1836.
SHUAI HUANG, JIN-DI WANG, YU YAN, et al. Crystal Site Engineering in Sr2LiSiO4F Enabling Mixed-valent Europium Toward Ratiometric Temperature Sensing. [J]. Chinese journal of luminescence, 2021, 42(12): 1829-1836. DOI: 10.37188/CJL.20210299.
通过高温固相法制备了一系列Eu掺杂的Sr
1.95+
x
Li
1-
x
Si
1-
x
Al
x
O
4
F(0≤
x
≤0.25)发光材料,并详细研究了所制备Sr
2
LiSiO
4
F化合物的晶体结构及相组成。利用Al
3+
-Sr
2+
离子对取代Si
4+
-Li
+
离子对的晶体位点工程,对Eu
2+
占据的Sr多面体位点进行调控,实现单相Sr
1.95+
x
Li
1-
x
Si
1-x
Al
x
O
4
F(0≤
x
≤0.25)材料中Eu
2+
和Eu
3+
的共存,获得了Sr
1.95+
x
Li
1-
x
Si
1-
x
Al
x
O
4
F∶Eu体系从绿光到红光的发光调谐。 通过对Sr
1.95+
x
Li
1-
x
Si
1-
x
-Al
x
O
4
F∶Eu材料中的Eu
2+
和Eu
3+
离子在25~300 ℃范围内温度依赖性光谱的研究发现Eu
2+
和Eu
3+
呈现不同的温度敏感特性。经计算,Sr
1.95+
x
Li
1-
x
Si
1-
x
Al
x
O
4
F∶0.05Eu发光材料的温度传感绝对灵敏度和相对灵敏度可分别达到2.83%·K
-1
与0.66%·K
-1
,进一步证实了所制备发光材料在温度传感方面的应用潜力。
Eu-doped Sr
1.95+
x
Li
1-
x
Si
1-
x
Al
x
O
4
F(0≤
x
≤0.25) phosphors were prepared by solid-state method. The Sr polyhedron sites occupied by Eu
2+
in the Sr
2
LiSiO
4
F matrix lattice were adjusted
via
crystal site engineering method which is implemented by replacing Si
4+
-Li
+
with Al
3+
-Sr
2+
ion pairs. The co-existence of Eu
2+
and Eu
3+
in single-phase Sr
1.95+
x
Li
1-
x
Si
1-
x
Al
x
O
4
F∶0.05Eu(0≤
x
≤ 0.25) phosphors was achieved
and the luminescence was tuned from green to red light. The temperature-dependent spectra(25-300 ℃) of Eu
2+
and Eu
3+
ions in Sr
1.95+
x
Li
1-
x
Si
1-
x
-Al
x
O
4
F∶0.05Eu were studied. It was found that Eu
2+
and Eu
3+
have different temperature sensitivities. The absolute sensitivity and relative sensitivity of temperature sensing of the Sr
1.95+
x
Li
1-
x
Si
1-
x
-Al
x
O
4
F∶0.05Eu phosphor reach 2.83%·K
-1
and 0.66%·K
-1
respectively
which further confirms the application potential of the prepared phosphors in temperature sensing.
晶格位点工程混合价态Eu温度传感
crystal site engineeringmixed-valent europiumratiometric temperature sensing
BRITES C D S, BALABHADRA S, CARLOS L D. Lanthanide-based thermometers∶at the cutting-edge of luminescence thermometry[J]. Adv. Opt. Mater., 2019, 7(5):1801239-1-30.
FU Y, LI C, ZHANG F, et al. Site preference and the optical thermometry strategy by different temperature response from two sites environment of Mn2+ in K7ZnSc2B15O30[J]. Chem. Eng. J., 2021, 409:128190.
LIANG S S, LI G G, DANG P P, et al. Cation substitution induced adjustment on lattice structure and photoluminescence properties of Mg14Ge5O24∶Mn4+∶optimized emission for w-LED and thermometry applications[J]. Adv. Opt. Mater., 2019, 7(12):1900093-1-15.
DONG L P, ZHANG L, JIA Y C, et al. Ga2-yAlyO4∶Mn2+,Mn4+ thermochromic phosphors∶valence state control and optical temperature sensing[J]. Inorg. Chem., 2020, 59(21):15969-15976.
LI G G, LIN C C, CHEN W T, et al. Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors∶DFT calculations,different site occupations,and luminescence mechanisms[J]. Chem. Mater., 2014, 26(9):2991-3001.
彭晓, 阳维维, 凌东雄, 等. 红色荧光粉Sr3LiSbO6∶Eu3+制备及其发光性质[J]. 发光学报, 2021, 42(4):455-461.
PENG X, YANG W W, LING D X, et al. Preparation and luminescence properties of red Sr3LiSbO6∶Eu3+ phosphor[J]. Chin. J. Lumin., 2021, 42(4):455-461. (in Chinese)
朱红波, 师学丽, 吴素玉, 等. Sr6Ca4(PO4)6F2∶Eu2+,Mn2+的发光性能调控[J]. 发光学报, 2020, 41(6):670-678.
ZHU H B, SHI X L, WU S Y, et al. Manipulation of luminescence properties of Sr6Ca4(PO4)6F2∶Eu2+,Mn2+[J]. Chin. J. Lumin., 2020, 41(6):670-678. (in Chinese)
TIAN M M, LI P L, WANG Z J, et al. Controlling multi luminescent centers via anionic polyhedron substitution to achieve single Eu2+ activated high-color-rendering white light/tunable emissions in single-phased Ca2(BO3)1-x(PO4)xCl phosphors for ultraviolet converted LEDs[J]. Chem. Eng. J., 2017, 326:667-679.
LAI S Q, ZHAO M, QIAO J W, et al. Data-driven photoluminescence tuning in Eu2+-doped phosphors[J]. J. Phys. Chem. Lett., 2020, 11(14):5680-5685.
LIU Q W, MENG F C, ZHANG X W, et al. Al3+-doping-induced enhancement of Tb3Ga5O12∶Eu3+ orange light-emitting phosphor photoluminescence for white light-emitting diodes[J]. J. Lumin., 2020, 226:117505.
BECERRO A I, ALLIX M, LAGUNA M, et al. Revealing the substitution mechanism in Eu3+∶CaMoO4 and Eu3+,Na+∶CaMoO4 phosphors[J]. J. Mater. Chem. C, 2018, 6(47):12830-12840.
MAOZ Y, WANG D J, LU Q F, et al. Tunable single-doped single-host full-color-emitting LaAlO3∶Eu phosphor via valence state-controlled means[J]. Chem. Commun., 2009 (3):346-348.
AN Z C, LIU W, SONG Y H, et al. Color-tunable Eu2+,Eu3+ co-doped Ca20Al26Mg3Si3O68 phosphor for w-LEDs[J]. J. Mater. Chem. C, 2019, 7(23):6978-6985.
CHEN W P, OUYANG Y J, MO M, et al. Observation of energy transfer from Eu2+ to Eu3+ and tunable luminescence in phosphors YF3∶Eu prepared by hydrothermal method[J]. J. Lumin., 2021, 229:117672.
ZHANG X M, KIM J S. Intense green-emitting Sr2LiSiO4F∶Eu2+ phosphor for n-UV white LEDs[J]. Appl. Phys. A, 2009, 97(3):549-552.
SIVAKUMAR V, VARADARAJU U V. Eu2+,Ce3+ Luminescence and Ce3+ →Eu2+ energy-transfer studies on Sr2LiSiO4F:a white light-emitting phosphor[J]. J. Electrochem. Soc., 2009, 156(7):J179-J184.
AKELLA A, KESZLER D A. Sr2LiSiO4F∶synthesis,structure,and Eu2+ luminescence[J]. Chem. Mater., 1995, 7(7):1299-1302.
XIE M B, LI D Y, PAN R K, et al. Crystallographic sites of Eu2+ and Eu2+-Tb3+ energy transfer in Sr2LiSiO4F[J]. RSC Adv., 2015, 5(29):22856-22862.
ZHANG Y, LI X J, LI K, et al. Crystal-site engineering control for the reduction of Eu3+ to Eu2+ in CaYAlO4∶structure refinement and tunable emission properties[J]. ACS Appl. Mater. Interfaces, 2015, 7(4):2715-2725.
WANG Y, KE Y E, CHEN S S, et al. Luminescence investigation of red-emitting Sr2MgMoO6∶Eu3+ phosphor for visualization of latent fingerprint[J]. J. Colloid Interface Sci., 2021, 583:89-99.
SHENG X X, DAI P P, SUN Z Y, et al. Site-selective occupation of Eu2+ activators toward full-visible-spectrum emission in well-designed borophosphate phosphors[J]. Chem. Eng. J., 2020, 395:125141-1-11.
ZHANG Y, WU Z J, GENG D L, et al. Full color emission in ZnGa2O4:simultaneous control of the spherical morphology,luminescent,and electric properties via hydrothermal approach[J]. Adv. Funct. Mater., 2014, 24(42):6581-6593.
ZHANG Q, WANG J, ZHANG M, et al. Enhanced photoluminescence of Ca2Al2SiO7∶Eu3+ by charge compensation method[J]. Appl. Phys. A, 2007, 88(4):805-809.
HUANG K W, CHEN W T, CHU C L, et al. Controlling the activator site to tune europium valence in oxyfluoride phosphors[J]. Chem. Mater., 2012, 24(11):2220-2227.
AMACHRAA M, WANG Z B, CHEN C, et al. Predicting thermal quenching in inorganic phosphors[J]. Chem. Mater., 2020, 32(14):6256-6265.
LIU D J, YUN X H, DANG P P, et al. Yellow/orange-emitting ABZn2Ga2O7∶Bi3+(A=Ca,Sr; B=Ba,Sr) phosphors∶optical temperature sensing and white light-emitting diode applications[J]. Chem. Mater., 2020, 32(7):3065-3077.
WANG P, MAO J S, ZHAO L, et al. Double perovskite A2LaNbO6∶Mn4+,Eu3+ (A=Ba,Ca) phosphors∶potential applications in optical temperature sensing[J]. Dalton Trans., 2019, 48(27):10062-10069.
WANG C L, JIN Y H, YUAN L F, et al. A spatial/temporal dual-mode optical thermometry platform based on synergetic luminescence of Ti4+-Eu3+ embedded flexible 3D micro-rod arrays∶high-sensitive temperature sensing and multi-dimensional high-level secure anti-counterfeiting[J]. Chem. Eng. J., 2019, 374:992-1004.
HUA Y B, YU J S. Strong green emission of erbium(Ⅲ)-activated La2MgTiO6 phosphors for solid-state lighting and optical temperature sensors[J]. ACS Sustainable Chem. Eng., 2021, 9(14):5105-5115.
HU T, GAO Y, MOLOKEEV M, et al. Non-stoichiometry in Ca2Al2SiO7 enabling mixed-valent europium toward ratiometric temperature sensing[J]. Sci. China Mater., 2019, 62(12):1807-1814.
SEKULIĆ M, D-ORD-EVIĆ V, RISTIĆ Z, et al. Highly sensitive dual self-referencing temperature readout from the Mn4+/Ho3+ binary luminescence thermometry probe[J]. Adv. Opt. Mater., 2018, 6(17):1800552-1-7.
0
Views
176
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution