浏览全部资源
扫码关注微信
1.江苏师范大学物理与电子工程学院 江苏省先进激光材料与器件重点实验室,江苏 徐州 221116
2.中国人民解放军32506部队,江苏 徐州 221116
Published:2021-12,
Received:08 September 2021,
Revised:25 September 2021,
移动端阅览
LI-ZHEN ZHANG, ZI-HAO WANG, JIAO HUANG, et al. Fabrication and Photoluminescence Properties of Eu3+ Doped Y2O3 Ceramic Fiber with High Aspect Ratio. [J]. Chinese journal of luminescence, 2021, 42(12): 1891-1899.
LI-ZHEN ZHANG, ZI-HAO WANG, JIAO HUANG, et al. Fabrication and Photoluminescence Properties of Eu3+ Doped Y2O3 Ceramic Fiber with High Aspect Ratio. [J]. Chinese journal of luminescence, 2021, 42(12): 1891-1899. DOI: 10.37188/CJL.20210297.
采用浆料直写(DIW)挤出成型工艺结合高温固相反应烧结技术,成功制备出高长径比稀土Eu
3+
掺杂Y
2
O
3
荧光陶瓷纤维。分别研究了陶瓷膏体的流变性能、陶瓷纤维的相结构和荧光动力学、以及不同温度下陶瓷纤维的荧光光谱演变。研究结果表明,采用羟丙基甲基纤维素(HPMC)水凝胶作为陶瓷膏体的有机助剂,最佳的粉体固含量为55%。烧结温度
>
1 200 ℃下均可得到纯的陶瓷晶相,随着温度的升高,陶瓷相没有明显变化,但在1 300 ℃下烧结得到的样品荧光寿命最长,可达1.12 ms。进一步表征了该温度下烧结样品的变温光致发光光谱,随着温度从100 K上升至500 K,发光光谱的积分强度没有明显降低,表明所制备的样品具有优异的发光热稳定性。
Eu
3+
doped Y
2
O
3
ceramic fiber phosphor with high aspect ratio was successfully fabricated by using direct ink writing(DIW) extrusion process combined with high temperature solid-state reaction method. The rheological properties of ceramic paste
phase structure and luminescence kinetic of ceramic fiber
as well as the temperature dependent photoluminescence(PL) spectra were successively investigated. The obtained results indicated that the optimal solid content was 55% for the ceramic paste with HPMC hydrogels as the additive. Pure ceramic phase could be achieved at the sintering temperature of
>
1 200 ℃. With increasing the temperature to 1 500 ℃
no significant change was observed for the phase structure. From the steady-state and transient PL spectra
the optimum luminescence performance was observed for the sample sintered at 1 300 ℃ with the luminescence lifetime of 1.12 ms. Finally
the temperature dependence of PL spectra was carefully studied
and the luminescence properties were not deteriorated with increasing temperature from 100 K to 500 K. Such a result may indicate an excellent luminescence thermal stability for our ceramic fiber.
荧光陶瓷纤维(Y0.85La0.10Eu0.05)2O3流变性能光致发光荧光寿命
ceramic fiber phosphor(Y0.85La0.10Eu0.05)2O3rheological propertiesphotoluminescenceluminescence lifetime
LIU H W, YU D D, NIU P J, et al. Lifetime prediction of a multi-chip high-power LED light source based on artificial neural networks[J]. Results Phys., 2019, 12:361-367.
JI J H, JO G, HA J G, et al. Recycled thermal energy from high power light emitting diode light source[J]. J. Nanosci. Nanotechnol., 2018, 18(9):6029-6032.
QIU Y J, WANG L L, WANG H L, et al. Bipolar ripple cancellation method to achieve single-stage electrolytic-capacitor-less high-power LED driver[J]. IEEE J. Emerg. Sel. Top. Power Electron, 2015, 3(3):698-713.
YOKOGAWA T, OYA M, FUJIKANE M. A high power InGaN-LED on an m-plane GaN substrate[J]. Electron. Commun. Japan, 2015, 98(5):15-22.
LU X Y, HUA T C, WANG Y P, et al. Thermal analysis of high power LED package with heat pipe heat sink[J]. Microelectronics J., 2011, 42(11):1257-1262.
HAMIDNIA M, LUO Y, WANG X D. Application of micro/nano technology for thermal management of high power LED packaging—a review[J]. Appl. Therm. Eng., 2018, 145:637-651.
WANG B, LIN H, XU J, et al. CaMg2Al16O27∶Mn4+-based red phosphor∶a potential color converter for high-powered warm W-LED[J]. ACS Appl. Mater. Interfaces, 2014, 6(24):22905-22913.
PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]∶Eu2+ as a next-generation LED-phosphor material[J]. Nat. Mater., 2014, 13(9):891-896.
BUCEVAC D, KRSTIC V. The effect of SiC addition on photoluminescence of YAG∶Ce phosphor for white LED[J]. J. Eur. Ceram. Soc., 2018, 38(16):5519-5524.
CHEN J J, ZHAO Y, MAO Z Y, et al. CaAlSiN3∶Eu2+-based color-converting coating application for white LEDs∶reduction of blue-light harm and enhancement of CRI value[J]. Mater. Res. Bull., 2017, 90:212-217.
HASEGAWA T. Design and fabrication of bismith-silicate photonic crystal fiber[J]. Opt. Commun., 2012, 285(19):3939-3944.
FAUGAS B, HAWKINS T, KUCERA C, et al. Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers[J]. J. Am. Ceram. Soc., 2018, 101(9):4340-4349.
DU P, YU J S. Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry[J]. Chem. Eng. J., 2017, 327:109-119.
CAO Y, HUANG F, LIN H, et al. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states[J]. Adv. Funct. Mater., 2016, 26(18):3139-3145.
TREJGIS K, BEDNARKIEWICZ A, MARCINIAK L. Engineering excited state absorption based nanothermometry for temperature sensing and imaging[J]. Nanoscale, 2020, 12(7):4667-4675.
YAO Q, HU P, SUN P, et al. YAG∶Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J]. Adv. Mater., 2020, 32(19):1907888.
BOYER M, CARRION A J F, ORY S, et al. Transparent Polycrystalline SrREGa3O7 melilite ceramics∶potential phosphors for tuneable solid state lighting[J]. J. Mater. Chem. C, 2016, 4(15):3238-3247.
TANG F, LI H Q, TIAN K Z, et al. Luminescence characteristics and vibronic coupling behavior of a highly efficient Eu2+-activated RbLi7Si2O8 green phosphor for wide color gamut WLEDs[J]. ACS Appl. Electron. Mater., 2020, 2(11):3749-3755.
TANG F, LI H Q, TIAN K Z, et al. Steady-state and time-resolved upconversion photoluminescence in Yb3+-Er3+ co-doped transparent ceramics of YAG[J]. Opt. Lett., 2020, 45(20):5712-5715.
CERVANTES-LÓPEZ J L, RANGEL R, MENESES-RODRÍGUEZ D, et al. Ce,Eu incorporation through doping of ALD-ZnO thin films for enhancing their photoluminescent properties[J]. Nanotechnology, 2021, 32(14):145601.
LIN H, HU T, CHENG Y, et al. Glass ceramic phosphors∶towards long-lifetime high-power white light-emitting-diode applications—a review[J]. Laser Photon. Rev., 2018, 12(6):1700344-1-31.
HUANG Y Q, BAI G X, ZHAO Y J, et al. Yb/Ho codoped layered perovskite bismuth titanate microcrystals with upconversion luminescence∶fabrication,characterization,and application in optical fiber ratiometric thermometry[J]. Inorg. Chem., 2020, 59(19):14229-14235.
郑昌仁, 徐敏, 吴石山, 等. 丁二烯-苯乙烯嵌段共聚物溶液粘度的测定和研究[J]. 高分子材料科学与工程, 2001, 17(6):78-82.
ZHENG C R, XU M, WU S S, et al. Measurement and investigation on SBS block copolymer solution viscosity[J]. Polymer Mater. Sci. Eng., 2001, 17(6):78-82. (in Chinese)
张军, 吴石山, 郑昌仁, 等. SBS浓溶液流动行为与粘度模型的研究[J]. 高分子材料科学与工程, 2002, 18(5):163-166.
ZHANG J, WU S S, ZHENG C R, et al. The study of flowing action and viscosity model of SBS concentrated solution[J]. Polymer Mater. Sci. Eng., 2002, 18(5):163-166. (in Chinese)
TIAN Z H, DUAN L, WU L, et al. Rheological properties of glutaraldehyde-crosslinked collagen solutions analyzed quantitatively using mechanical models[J]. Mater. Sci. Eng. C,Mater. Biol. Appl., 2016, 63:10-17.
ZHAO H, TANG F, XIE Y Z, et al. Fabrication and rheological behavior of tape-casting slurry for ultra-thin multilayer transparent ceramics[J]. Int. J. Appl. Ceram. Technol., 2020, 17(3):1255-1263.
DU P, HUANG X Y, YU J S. Facile synthesis of bifunctional Eu3+-activated NaBiF4 red-emitting nanoparticles for simultaneous white light-emitting diodes and field emission displays[J]. Chem. Eng. J., 2018, 337:91-100.
杨国辉, 王小军, 陈彩花, 等. 基于Eu3+还原制备Eu3+-Eu2+共存发光材料的研究进展[J]. 发光学报, 2017, 38(11):1475-1485.
YANG G H, WANG X J, CHEN C H, et al. Research progress in Eu3+-Eu2+ coexisting luminescent materials based on the reduction of Eu3+[J]. Chin. J. Lumin., 2017, 38(11):1475-1485. (in Chinese)
TANG F, SU Z C, LAO X Z, et al. The key roles of 4f-level splitting and vibronic coupling in the high-efficiency luminescence of Ce3+ ion in LuAG transparent ceramic phosphors[J]. J. Lumin., 2020, 225:117360.
SU Z C, XU S J. A generalized model for time-resolved luminescence of localized carriers and applications∶dispersive thermodynamics of localized carriers[J]. Sci. Rep., 2017, 7(1):13-1-8.
SHABLINSKII A P, POVOLOTSKII A V, DROZDOVA I A, et al. New luminescent BaBi2-xEuxB2O7 glassmaterials[J]. Glass Phys. Chem., 2019, 45(1):74-78.
吕滨, 程鹏, 陈红兵, 等. Y/Gd/Eu三元稀土层状化合物的离子交换行为与光学性能[J]. 稀有金属材料与工程, 2019, 48(2):559-565.
LU B, CHENG P, CHEN H B, et al. Anion-exchange behavior and optical properties of ternary Y/Gd/Eu layered rare-earth hydroxides[J]. Rare Metal Mat. Eng., 2019, 48(2):559-565. (in Chinese)
0
Views
473
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution