LI-YAN GONG, BIN TANG, HONG-PO HU, et al. Effect of Hybrid Nucleation Layer on Internal Quantum Efficiency of InGaN-based Yellow LEDs. [J]. Chinese journal of luminescence, 2021, 42(12): 1914-1920.
DOI:
LI-YAN GONG, BIN TANG, HONG-PO HU, et al. Effect of Hybrid Nucleation Layer on Internal Quantum Efficiency of InGaN-based Yellow LEDs. [J]. Chinese journal of luminescence, 2021, 42(12): 1914-1920. DOI: 10.37188/CJL.20210286.
Effect of Hybrid Nucleation Layer on Internal Quantum Efficiency of InGaN-based Yellow LEDs增强出版
A hybrid nucleation layer consisting of sputtered AlN component and mid-temperature GaN component was developed to improve the internal quantum efficiency of yellow LED. Transmission electron microscopy
X-ray diffraction
and Raman spectra were used to characterize the crystal quality of InGaN-based yellow LEDs. The optical properties of InGaN-based yellow LEDs were investigated by temperature-dependent photoluminescence spectra and electroluminescence spectra. It is found that stacking faults are formed using the hybrid nucleation layer
which can effectively reduce the dislocation density and residual stress in the epitaxial layer. The dislocation density of yellow LED epitaxial layer grown on the sputtered AlN nucleation layer and hybrid nucleation layer is 5.04×10
8
cm
-2
and 3.98×10
8
cm
-2
. The in-plane compressive stress of yellow LED grown on the sputtered AlN nucleation layer and hybrid nucleation layer is 482.71 MPa and 266.38 MPa. By replacing the conventional sputtered AlN nucleation layer with hybrid nucleation layer
the internal quantum efficiency of yellow LEDs is increased from 12.5% to 29.8% at room temperature of 295 K.
LIN H W, LU Y J, CHEN H Y, et al. InGaN/GaN nanorod array white light-emitting diode[J]. Appl. Phys. Lett., 2010, 97(7):073101-1-3.
SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J]. Science, 2005, 308(5726):1274-1278.
PONCE F A, BOUR D P. Nitride-based semiconductors for blue and green light-emitting devices[J]. Nature, 1997, 386(6623):351-359.
HU H P, TANG B, WAN H, et al. Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array[J]. Nano Energy, 2020, 69:104427.
ZHOU S J, LIU X T, YAN H, et al. Highly efficient GaN-based high-power flip-chip light-emitting diodes[J]. Opt. Express, 2019, 27(12):A669-A692.
NARUKAWA Y, ICHIKAWA M, SANGA D, et al. White light emitting diodes with super-high luminous efficacy[J]. J. Phys. D:Appl. Phys., 2010, 43(35):354002.
HU Y S, ZHUANG W D, YE H Q, et al. A novel red phosphor for white light emitting diodes[J]. J. Alloys Compd., 2005, 390(1-2):226-229.
ZHAO X Y, TANG B, GONG L Y, et al. Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes[J]. Appl. Phys. Lett., 2021, 118(18):182102.
PRINS A D, SLY J L, MENEY A T, et al. High pressure determination of AlGaInP band structure[J]. J. Phys. Chem. Solids, 1995, 56(3-4):349-352.
JIANG F Y, ZHANG J L, XU L Q, et al. Efficient InGaN-based yellow-light-emitting diodes[J]. Photonics Res., 2019, 7(2):144-148.
ALHASSAN A I, YOUNG N G, FARRELL R M, et al. Development of high performance green c-plane Ⅲ-nitride light-emitting diodes[J]. Opt. Express, 2018, 26(5):5591-5601.
DER MAUR M A, LORENZ K, DI CARLO A. Band gap engineering approaches to increase InGaN/GaN LED efficiency[J]. Opt. Quant. Electron., 2012, 44(3-5):83-88.
LEKHAL K, DAMILANO B, NGO H T, et al. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission[J]. Appl. Phys. Lett., 2015, 106(14):142101-1-5.
LEKHAL K, HUSSAIN S, DE MIERRY P, et al. Optimized In composition and quantum well thickness for yellow-emitting (Ga,In)N/GaN multiple quantum wells[J]. J. Cryst. Growth, 2016, 434:25-29.
ALAEI H R, ESHGHI H. Theoretical modeling for quantum-confined Stark effect due to internal piezoelectric fields in GaInN strained quantum wells[J]. Phys. Lett. A, 2009, 374(1):66-69.
YAMAMOTO S, ZHAO Y J, PAN C C, et al. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (2021) GaN substrates[J]. Appl. Phys. Express, 2010, 3(12):122102.
ROMANOV A E, BAKER T J, NAKAMURA S, et al. Strain-induced polarization in wurtzite III-nitride semipolar layers[J]. J. Appl. Phys., 2006, 100(2):023522-1-10.
ANCHAL N, PANSARI A, SAHOO B K, et al. Effect of polarization field and Auger recombination on internal quantum efficiency of InGaN/GaN blue LED[J]. AIP Conf. Proc., 2020, 2220(1):050008.
HU H P, ZHOU S J, WAN H, et al. Effect of strain relaxation on performance of InGaN/GaN green LEDs grown on 4-inch sapphire substrate with sputtered AlN nucleation layer[J]. Sci. Rep., 2019, 9(1):3447-1-9.
周圣军, 刘胜. 氮化镓基发光二极管芯片设计与制造技术[M]. 北京: 科学出版社, 2019.
ZHOU S J, LIU S. Design and Manufacturing Technology of GaN-based Light-emitting Diodes[M]. Beijing: Science Press, 2019. (in Chinese)
YEN C H, LAI W C, YANG Y Y, et al. GaN-based light-emitting diode with sputtered AlN nucleation layer[J]. IEEE Photonic. Tech. Lett., 2012, 24(4):294-296.
ITO S, NAKAGITA T, SAWAKI N, et al. Nature of yellow luminescence band in GaN grown on Si substrate[J]. Jpn. J. Appl. Phys., 2014, 53(11S):11RC02-1-5.
KOSLOW I L, HARDY M T, HSU P S, et al. Performance and polarization effects in (11<math id="M1"><mover accent="true"><mn>2</mn><mo>¯</mo></mover></math>2) long wavelength light emitting diodes grown on stress relaxed InGaN buffer layers[J]. Appl. Phys. Lett., 2012, 101(12):121106-1-4.
AMANO H, SAWAKI N, AKASAKI I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Appl. Phys. Lett., 1986, 48(5):353-355.
HU H P, ZHOU S J, LIU X T, et al. Effects of GaN/AlGaN/sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes[J]. Sci. Rep., 2017, 7:44627-1-10.
WU X H, ELSASS C R, ABARE A, et al. Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells[J]. Appl. Phys. Lett., 1998, 72(6):692-694.
LESTER S D, PONCE F A, CRAFORD M G, et al. High dislocation densities in high efficiency GaN-based light-emitting diodes[J]. Appl. Phys. Lett., 1995, 66(10):1249-1251.
KIM J, WOO H, JOO K, et al. Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres[J]. Sci. Rep., 2013, 3:3201-1-7.
CHIERCHIA R, BÖTTCHER T, HEINKE H, et al. Microstructure of heteroepitaxial GaN revealed by X-ray diffraction[J]. J. Appl. Phys., 2003, 93(11):8918-8925.
HUSHUR A, MANGHNANI M H, NARAYAN J. Raman studies of GaN/sapphire thin film heterostructures[J]. J. Appl. Phys., 2009, 106(5):054317-1-5.
ZHAO Y, XU S R, PENG R S, et al. Performance enhancement of InGaN/GaN MQWs grown on SiC substrate with sputtered AlN nucleation layer[J]. Mater. Lett., 2021, 294:129783.
ZHOU S, HU H P, LIU X T, et al. Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer[J]. Jpn. J. Appl. Phys., 2017, 56(11):111001-1-8.
WATANABE S, YAMADA N, NAGASHIMA M, et al. Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes[J]. Appl. Phys. Lett., 2003, 83(24):4906-4908.
LV Q J, LIU J L, MO C L, et al. Realization of highly efficient InGaN green LEDs with sandwich-like multiple quantum well structure:role of enhanced interwell carrier transport[J]. ACS Photonics, 2019, 6(1):130-138.
Influence of Photo-electron Coupling on Optical Properties of InGaN/GaN Quantum Wells
Improvement of Internal Quantum Efficiency of Asymmetric ZnO/ZnMgO Multi-quantum Wells
Relationship Between Light-emitting Diode Performance and Different Substrates Working Under Non-isothermal Model
A Theoretic Analysis of Electrical Injection and Optical Output Process in High Brightness Light Emitting Diodes
Related Author
Sheng-jun ZHOU
Li-yan GONG
Bin TANG
Xiao-yu ZHAO
Hong-po HU
ZHANG Bao-ping
QIU Zhi-ren
ZHENG Zhi-wei
Related Institution
Wuhan University, School of Power and Mechanical Engineering
Laboratory of Micro/Nano-Optoelectronics, School of Electronic Science and Engineering, Xiamen University
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics,Sun Yat-sen University
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
University of the Chinese Academy of Sciences, Beijing 100049, China