浏览全部资源
扫码关注微信
1.中国航发四川燃气涡轮研究院,四川 成都 610500
2.浙江大学 物理系,浙江 杭州 310027
Published:2021-12,
Received:20 August 2021,
Revised:07 September 2021,
移动端阅览
ZHI-HONG ZHANG, HUI-LI ZHOU, FENG WU, et al. Temperature Sensing Characteristics of Up-conversion Luminescence in Tm3+/Yb3+ Co-doped LuYO3 Phosphor. [J]. Chinese journal of luminescence, 2021, 42(12): 1872-1881.
ZHI-HONG ZHANG, HUI-LI ZHOU, FENG WU, et al. Temperature Sensing Characteristics of Up-conversion Luminescence in Tm3+/Yb3+ Co-doped LuYO3 Phosphor. [J]. Chinese journal of luminescence, 2021, 42(12): 1872-1881. DOI: 10.37188/CJL.20210276.
采用CO
2
激光区熔法制备了LuYO
3
∶Tm
3+
(0.3%)-Yb
3+
(5%)荧光材料。在980 nm激光激发下测量了样品在可见光波段的上转换(UC)荧光光谱,其中
1
G
4
→
3
H
6
跃迁产生的蓝色上转换荧光发生明显的Stark劈裂。利用荧光强度比(FIR)方法对样品的Stark劈裂能级
1
G
4(a)
与
1
G
4(b)
和
3
F
2
3
与
3
H
4
两对热耦合能级的荧光温度传感特性进行研究。结果表明,两对热耦合能级的测温范围为223~723 K。
1
G
4(a)
与
1
G
4(b)
能级在低温下灵敏度较高,在223 K处有最大绝对灵敏度5.62×10
-3
K
-1
和最大相对灵敏度28.2×10
-3
K
-1
;
3
F
2
3
与
3
H
4
能级比较适合高温下的温度传感,最大绝对灵敏度为1.44×10
-3
K
-1
(723 K),最大相对灵敏度为4.61×10
-3
K
-1
(516.3 K),表明所制备荧光材料非常适合用于荧光温度传感。
LuYO
3
∶Tm
3+
(0.3%)-Yb
3+
(5%) phosphor was prepared by CO
2
laser zone melting method. Under the excitation of 980 nm laser
the sample exhibits up-conversion luminescence(UCL) corresponding to
1
G
4
→
3
H
6
1
G
4
→
3
F
4
3
F
2
3
→
3
H
6
3
H
4
→
3
H
6
transition in the visible light region
among which obvious Stark splits of luminescence are observed in the blue UCL corresponding to
1
G
4
→
3
H
6
transition. The temperature sensing characteristics of
1
G
4(a)
1
G
4(b)
and
3
F
2
3
3
H
4
thermally coupled levels(TCLs) are investigated by fluorescence intensity ratio(FIR) method. The results show that the temperature measurement range of the two pairs of TCLs is 223~723 K. The Stark sub-levels
1
G
4(a)
and
1
G
4(b)
have higher sensitivity at low temperatures with maximum absolute sensitivity 5.62×10
-3
K
-1
and maximum relative sensitivity 28.2×10
-3
K
-1
at 223 K
the
3
F
2
3
and
3
H
4
TCLs are more suitable for high temperature measurement with maximum absolute sensitivity 1.44×10
-3
K
-1
(723 K) and maximum relative sensitivity 4.61×10
-3
K
-1
(516.3 K)
indicating that the prepared fluorescent material is very suitable for fluorescent temperature sensing.
Tm3+/Yb3+∶LuYO3上转换发光荧光强度比(FIR)荧光温度传感
Tm3+/Yb3+∶LuYO3upconversion luminescencefluorescence intensity ratio(FIR)optical temperature sensing
金叶, 李坤, 罗旭, 等. Sc2(WO4)3∶Er3+/Yb3+的上转换发光及其温度传感特性[J]. 发光学报, 2021, 42(1):91-97.
JIN Y, LI K, LUO X, et al. Upconversion luminescence and temperature sensing properties for Sc2(WO4)3∶Er3+/Yb3+[J]. Chin. J. Lumin., 2021, 42(1):91-97. (in Chinese)
张焕君, 董兴邦, 李海宁, 等. 六方相LaOF∶Er,Yb的上转换发光及温度传感特性[J]. 发光学报, 2020, 41(5):536-541.
ZHANG H J, DONG X B, LI H N, et al. Upconversion emission and temperature sensing of R-LaOF∶Er,Yb[J]. Chin. J. Lumin., 2020, 41(5):536-541. (in Chinese)
陈静, 王友法. 溶剂热法制备NaBiF4∶Yb3+/Er3+及掺杂Rb+离子增强其上转换荧光[J]. 硅酸盐学报, 2020, 48(1):35-43.
CHEN J, WANG Y F. Preparation of NaBiF4∶Yb3+/Er3+ particles via solvothermal method and enhancement of upconversion luminescence by Rb+ ion doping[J]. J. Chin. Ceram. Soc., 2020, 48(1):35-43. (in Chinese)
赵玉慈, 赵雄燕, 王鑫. 稀土上转换纳米发光材料的研究进展[J]. 现代化工, 2016, 36(7):21-24.
ZHAO Y C, ZHAO X Y, WANG X. Research progress of rare-earth up-conversion luminescent material[J]. Modern Chem. Ind., 2016, 36(7):21-24. (in Chinese)
WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. J. Appl. Phys., 2003, 94(8):4743-4756.
WANG X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors[J]. RSC Adv., 2015, 5(105):86219-86236.
XING L L, XU Y L, WANG R, et al. Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal[J]. Opt. Lett., 2014, 39(3):454-457.
ZHOU H L, AN N, ZHU K S, et al. Optical temperature sensing properties of Tm3+/Yb3+ co-doped LuAG polycrystalline phosphor based on up-conversion luminescence[J]. J. Lumin., 2021, 229:117656.
YU L, YE L H, BAO R J, et al. Sensitivity-enhanced Tm3+/Yb3+ co-doped YAG single crystal optical fiber thermometry based on upconversion emissions[J]. Opt. Commun., 2018, 410:632-636.
郑龙江, 高晓阳, 徐伟, 等. Tm3+,Yb3+共掺微晶玻璃蓝色上转换荧光的温度特性[J]. 发光学报, 2012, 33(9):944-948.
ZHENG L J, GAO X Y, XU W, et al. Temperature characteristic of blue up-conversion emission in Tm3+,Yb3+ codoped oxyfluoride glass ceramic[J]. Chin. J. Lumin., 2012, 33(9):944-948. (in Chinese)
吴中立, 吴红梅, 唐立丹, 等. Tm3+/Yb3+共掺氟氧化物碲酸盐玻璃的上转换发光及光学温度传感[J]. 光子学报, 2017, 46(9):0916003-1-7.
WU Z L, WU H M, TANG L D, et al. Up-conversion light-emitting and optical temperature sensing for Tm3+/Yb3+ codoped oxyfluoride tellurite glass[J]. Acta Photon. Sinica, 2017, 46(9):0916003-1-7. (in Chinese)
宗玲博. 钇氧化物基质材料的微结构调控及其对发光性能的增强效应研究[D]. 北京: 北京科技大学, 2017.
ZONG L B. Microstructure Control of Yttrium-based Oxides Host Materials and Their Enhanced Effect on Luminescence Properties[D]. Beijing: University of Science and Technology Beijing, 2017. (in Chinese)
PETERMANN K, HUBER G, FORNASIERO L, et al. Rare-earth-doped sesquioxides[J]. J. Lumin., 2000, 87-89:973-975.
CHEN G Z, LI S M, ZHANG L H, et al. Growth and spectra of Tm3+ doped LuYO3 single crystal for 2 μm lasers[J]. Infrared Phys. Technol., 2020, 109:103431.
ZHOU Z Y, GUAN X F, HUANG X X, et al. Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05 μm source operating in continuous-wave and passive Q-switching regimes[J]. Opt. Lett., 2017, 42(19):3781-3784.
YE L H, ZHANG J F, SHI Y. Growth and characteristics of Cr3+∶YAG crystal fiber for fluorescence decay temperature sensor[J]. Rev. Sci. Instrum., 2006, 77(5):054901-1-4.
BAO R J, YU L, YE L H, et al. Compact and sensitive Er3+/Yb3+ co-doped YAG single crystal optical fiber thermometry based on up-conversion luminescence[J]. Sens. Actuators A Phys., 2018, 269:182-187.
HOU X R, ZHOU S M, LIN H, et al. Violet and blue upconversion luminescence in Tm3+/Yb3+ codoped Y2O3 transparent ceramic[J]. J. Appl. Phys., 2010, 107(8):083101-1-4.
LI D Y, WANG Y X, ZHANG X R, et al. Optical temperature sensor through infrared excited blue upconversion emission in Tm3+/Yb3+ codoped Y2O3[J]. Opt. Commun., 2012, 285(7):1925-1928.
POLLNAU M, GAMELIN D R, LÜTHI S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev. B, 2000, 61(5):3337-3346.
DONG H, SUN L D, YAN C H. Energy transfer in lanthanide upconversion studies for extended optical applications[J]. Chem. Soc. Rev., 2015, 44(6):1608-1634.
李瑞琴, 邱建备, 杨正文, 等. Yb3+/Tm3+共掺杂Sb2O4荧光粉的制备及上转换发光性质研究[J]. 光谱学与光谱分析, 2014, 34(3):630-633.
LI R Q, QIU J B, YANG Z W, et al. Preparation and up-conversion luminescence properties of Yb3+/Tm3+ co-doped Sb2O4 powder[J]. Spectrosc. Spect. Anal., 2014, 34(3):630-633. (in Chinese)
ZHANG Z H, LOUCHET-CHAUVET A, MORVAN L, et al. Tailoring the 3F4 level lifetime in Tm3+∶Y3Al5O12 by Eu3+ co-doping for signal processing application[J]. J. Lumin., 2020, 222:117107.
李路, 娄朝刚, 谢宇飞. Ce3+-Yb3+共掺YAG荧光粉量子剪裁发光的浓度及温度特性[J]. 发光学报, 2016, 37(12):1445-1450.
LI L, LOU C G, XIE Y F. Concentration and temperature characteristics of quantum cutting luminescence in Ce3+-Yb3+ co-doped YAG phosphor[J]. Chin. J. Lumin., 2016, 37(12):1445-1450. (in Chinese)
林燕金, 黄衍堂, 吴锦树, 等. 稀土荧光特性与温度关系[J]. 光子学报, 2016, 45(1):0116002-1-6.
LIN Y J, HUANG Y T, WU J S, et al. Relationship between rare earth fluorescence characteristic and temperature[J]. Acta Photon. Sinica, 2016, 45(1):0116002-1-6. (in Chinese)
芦泓宇. 基于稀土掺杂上转换材料荧光峰值比的温度传感[D]. 哈尔滨: 哈尔滨工业大学, 2017.
LU H Y. Temperature Sensing of Rare Earth Doped Upconversion Materials based on Fluorescence Intensity Ratio Technique[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
赵旺, 平兆艳, 郑庆华, 等. 白光发光二极管用SrGdLiTeO6∶Eu3+红色荧光粉的浓度猝灭和温度猝灭行为[J]. 物理学报, 2018, 67(24):247801-1-10.
ZHAO W, PING Z Y, ZHENG Q H, et al. Concentration and thermal quenching of SrGdLiTeO6∶Eu3+ red-emitting phosphor for white light-emitting diode[J]. Acta Phys. Sinica, 2018, 67(24):247801-1-10. (in Chinese)
MIN Q H, BIAN W J, QI Y S, et al. Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal[J]. J. Alloys Compd., 2017, 728:1037-1042.
TONG L L, LI X P, HUA R N, et al. Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals[J]. Curr. Appl. Phys., 2017, 17(7):999-1004.
LIU Z H, LONG S W, ZHU Y Z, et al. Optical thermometry based on thermolabile intrinsic polarons in Tm3+ and Yb3+ co-doped congruent lithium niobate single crystal[J]. J. Alloys Compd., 2021, 867:158986.
GE W Y, XU M M, SHI J D, et al. Highly temperature-sensitive and blue upconversion luminescence properties of Bi2Ti2O7∶Tm3+/Yb3+ nanofibers by electrospinning[J]. Chem. Eng. J., 2020, 391:123546.
ZHANG N, ZHOU H L, YIN Y R, et al. Exploring promising up-conversion luminescence single crystal fiber in sesquioxide family for high temperature optical thermometry application[J]. J. Alloys Compd., 2021, 889:161348.
SUO H, GUO C F, YANG Z, et al. Thermometric and optical heating bi-functional properties of upconversion phosphor Ba5Gd8Zn4O21∶Yb3+/Tm3+[J]. J. Mater. Chem. C, 2015, 3(28):7379-7385.
SUO H, HU F F, ZHAO X Q, et al. All-in-one thermometer-heater up-converting platform YF3∶Yb3+,Tm3+ operating in the first biological window[J]. J. Mater. Chem. C, 2017, 5(6):1501-1507.
ZHOU S S, JIANG G C, LI X Y, et al. Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles[J]. Opt. Lett., 2014, 39(23):6687-6690.
0
Views
205
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution