Detection of Hydrogen Peroxide and Cholest-erol Based on Zinc Doped Quantum Dots and Fenton-like Reaction Fluorescent Probe Preparation
Luminescence Applications and Interdisciplinary Fields|更新时间:2021-12-17
|
Detection of Hydrogen Peroxide and Cholest-erol Based on Zinc Doped Quantum Dots and Fenton-like Reaction Fluorescent Probe Preparation
增强出版
Chinese Journal of LuminescenceVol. 42, Issue 12, Pages: 1951-1960(2021)
作者机构:
延安大学化学与化工学院 延安市绿色合成材料与化学安全检测重点实验室,陕西 延安 716000
作者简介:
基金信息:
the Natural Science Special Project of Shaanxi Province(2020JQ-789);Key Scientific Research Projects of Shaanxi Provincial Department of Education(20JS156)
XUE-HUA SUN, YU QIANG, DU-TING HAO, et al. Detection of Hydrogen Peroxide and Cholest-erol Based on Zinc Doped Quantum Dots and Fenton-like Reaction Fluorescent Probe Preparation. [J]. Chinese journal of luminescence, 2021, 42(12): 1951-1960.
DOI:
XUE-HUA SUN, YU QIANG, DU-TING HAO, et al. Detection of Hydrogen Peroxide and Cholest-erol Based on Zinc Doped Quantum Dots and Fenton-like Reaction Fluorescent Probe Preparation. [J]. Chinese journal of luminescence, 2021, 42(12): 1951-1960. DOI: 10.37188/CJL.20210271.
Detection of Hydrogen Peroxide and Cholest-erol Based on Zinc Doped Quantum Dots and Fenton-like Reaction Fluorescent Probe Preparation增强出版
LIN L P, LUO Y X, TSAI P, et al. Metal ions doped carbon quantum dots: synthesis,physicochemical properties,and their applications[J]. TrAC Trends Anal. Chem., 2018, 103:87-101.
ZHU C, YANG S W, SUN J, et al. Deep ultraviolet emission photoluminescence and high luminescece efficiency of ferric passivated graphene quantum dots:strong negative inductive effect of Fe[J]. Synth. Met., 2015, 209:468-472.
LIN X, XU D, ZHAO R, et al. Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light[J]. Sep. Purif. Technol., 2017, 178:163-168.
WANG L, WANG Y T, SUN X F, et al. Versatile self-assembly and biosensing applications of DNA and carbon quantum dots coordinated cerium ions[J]. Chem-Eur. J., 2017, 23(43):10413-10422.
MENG A L, XU Q H, ZHAO K, et al. A highly selective and sensitive “on-off-on” fluorescent probe for detecting Hg(Ⅱ) based on Au/N-doped carbon quantum dots[J]. Sens. Actuators B: Chem., 2018, 255:657-665.
ZHUO S J, GAO L L, ZHANG P, et al. Living cell imaging and sensing of hydrogen sulfide using high-efficiency fluorescent Cu-doped carbon quantum dots[J]. New J. Chem., 2018, 42(24):19659-19664.
DING H, YU S B, WEI J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano, 2016, 10(1):484-491.
XU Q, SU R G, CHEN Y S, et al. Metal charge transfer doped carbon dots with reversibly switchable,ultra-high quantum yield photoluminescence[J]. ACS Appl. Nano Mater., 2018, 1(4):1886-1893.
YUE L L, LI H L, SUN Q, et al. Red-emissive ruthenium-containing carbon dots for bioimaging and photodynamic cancer therapy[J]. ACS Appl. Nano Mater., 2020, 3(1):869-876.
WEI J F, QIANG L, REN J, et al. Fluorescence turn-off detection of hydrogen peroxide and glucose directly using carbon nanodots as probes[J]. Anal. Methods, 2014, 6(6):1922-1927.
LIU J W, LUO Y, WANG Y M, et al. Graphitic carbon nitride nanosheets-based ratiometric fluorescent probe for highly sensitive detection of H2O2 and glucose[J]. ACS Appl. Mater. Interfaces, 2016, 8(49):33439-33445.
QIAN Z S, SHAN X Y, CHAI L J, et al. Si-doped carbon quantum dots:a facile and general preparation strategy,bioimaging application,and multifunctional sensor[J]. ACS Appl. Mater. Interfaces, 2014, 6(9):6797-6805.
MANH S, LYU X M, HUANG J Y. Preparation and characterization of chitosan-based carbon dots and its application in hydrogen peroxide analysis[J]. J. Nucl. Agric. Sci., 2021, 35(5):1147-1153. (in Chinese)
WANG L C, HONG C Y, HUANG Z Y. Fluorescence detection of cholesterol in milk based on hemin as peroxidase mimetic[J]. J. Chin. Inst. Food Sci. Technol., 2021, 21(5):363-368. (in Chinese)
SUN X H, ZHANG J T, HAO D T, et al. Determination of histidine by a signal-on strategy based on Ag+ modified N-doped carbon quantum dots[J]. Chin. J. Anal. Lab., 2021, 40(4):399-403. (in Chinese)
ZHAN X F, TANG J S, WU J, et al. Determination of copper ions in water samples by silicon doped carbon quantum dots[J]. J. Instr. Anal., 2016, 35(11):1461-1465. (in Chinese)
REN R N, FU K, FENG G, et al. Research progress of spectrophotometric method to determine the hydroxyl free radical scavenger[J]. Anhui Chem. Ind., 2014, 40(3):19-21. (in Chinese)
古桃. 铜系催化剂类芬顿氧化法处理染料废水的研究[D]. 郑州: 郑州大学, 2018.
GU T. Study on the Fenton-like Oxidation of Dye Wastewater with Copper Based Catalysts[D]. Zhengzhou: Zhengzhou University, 2018. (in Chinese)
LIU D, SHANG H. Copper nanoclusters-based nanoprobes for colorimetric detection of cholesterol in milk[J]. Food Sci., 2014, 35(12):143-147. (in Chinese)
GORASSINI A, VERARDO G, FREGOLENT S C, et al. Rapid determination of cholesterol oxidation products in milk powder based products by reversed phase SPE and HPLC-APCI-MS/MS[J]. Food Chem., 2017, 230:604-610.
LIN T R, ZHONG L S, CHEN H, et al. A sensitive colorimetric assay for cholesterol based on the peroxidase-like activity of MoS2 nanosheets[J]. Microchim. Acta, 2017, 184(4):1233-1237.
ZHU L, XU L L, TAN L, et al. Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing[J]. Talanta, 2013, 106:192-199.
CHANG H C, HO J A A. Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles[J]. Anal. Chem., 2015, 87(20):10362-10367.