浏览全部资源
扫码关注微信
1.中国计量大学 材料与化学学院,浙江 杭州 310018
2.中国科学院上海硅酸盐研究所 人工晶体研究中心,上海 201899
Published:01 November 2021,
Received:17 August 2021,
Revised:01 September 2021,
扫 描 看 全 文
Jie-nan YANG, Xue-min WEN, Qin-hua WEI, et al. Current Status of Red and Near-infrared Emission Halide Scintillation Crystals. [J]. Chinese Journal of Luminescence 42(11):1661-1672(2021)
Jie-nan YANG, Xue-min WEN, Qin-hua WEI, et al. Current Status of Red and Near-infrared Emission Halide Scintillation Crystals. [J]. Chinese Journal of Luminescence 42(11):1661-1672(2021) DOI: 10.37188/CJL.20210270.
近年来,以雪崩二极管和硅光电倍增管为代表的高探测效率、长波敏感的硅基光探测器件技术得到快速发展,这使得具有红光-近红外发光特性的闪烁晶体材料逐渐受到关注。本文综述了红光-近红外发光金属卤化物闪烁晶体的发展历程,重点介绍了基于Eu
2+
-Sm
2+
能量传递的新型红光-近红外发光卤化物晶体的发光机理、闪烁性能和实现高效红光-近红外闪烁发光的材料选择原则,并从材料制备和探测器应用的角度分析了红光-近红外发光闪烁晶体发展所面临的问题。
In recent years
the technology of silicon-based photodetectors has developed rapidly
especially in avalanche diode and silicon photomultiplier tube
which present high quantum efficiency and high long-wavelength sensitivity. Therefore
the red and near-infrared luminescent scintillation crystals have been concerned. In this review
firstly
the development history of red and near-infrared emission halide scintillation crystals is summarized. Secondly
the scintillation properties and luminescence mechanism of Eu
2+
-Sm
2+
co-doped metal halide scintillation crystals are described in detail
and the selection principle for excellent red and near-infrared luminescence material is also discussed. Finally
from the viewpoint of both material preparation and detector development
the problems for red and near-infrared scintillators are analyzed.
红光-近红外发光闪烁晶体光电转换器件金属卤化物核辐射探测
red and near-infrared luminescencescintillation crystalphotoelectric conversion devicemetal halidenuclear radiation detection
RODNYI P A. Physical Processes in Inorganic Scintillators[M]. Boca Raton: CRC Press, 1997.
LECOQ P. Development of new scintillators for medical applications[J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 2016, 809: 130-139.
VAN EIJK C W E. Inorganic-scintillator development[J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 2001, 460(1): 1-14.
赵景泰, 王红, 金滕滕, 等. 闪烁晶体材料的研究进展[J]. 中国材料进展, 2010, 29(10): 40-48.
ZHAO J T, WANG H, JIN T T, et al. Research development of inorganic scintillating crystals[J]. Mater. China, 2010, 29(10): 40-48. (in Chinese)
BLASSE G, GRABMAIER B C. A general introduction to luminescent materials[M]. BLASSE G, GRABMAIER B C. Luminescent Materials. Berlin: Springer, 1994: 1-9.
任国浩. 无机闪烁晶体在我国的发展史[J]. 人工晶体学报, 2019, 48(8): 1373-1385.
REN G H. Development history of inorganic scintillation crystals in China[J]. J. Synth. Cryst., 2019, 48(8): 1373-1385. (in Chinese)
HOFSTADTER R. The detection of gamma-rays with thallium-activated sodium iodide crystals[J]. Phys. Rev., 1949, 75(5): 796-810.
VAN SCIVER W, HOFSTADTER R. Scintillations in thallium-activated CaI2 and CsI[J]. Phys. Rev., 1951, 84(5): 1062-1063.
JARY V, NIKL M, MIHOKOVA E, et al. Influence of yttrium content on the Ce1 and Ce2 luminescence characteristics in (Lu1-xYx)2SiO5∶Ce single crystals[J]. IEEE Trans. Nucl. Sci., 2012, 59(5): 2079-2084.
ALEKHIN M S, BINER D A, KRäMER K W, et al. Improvement of LaBr3∶5%Ce scintillation properties by Li+, Na+, Mg2+, Ca2+, Sr2+, and Ba2+ co-doping[J]. J. Appl. Phys., 2013, 113(22): 224904-1-7.
陈成杰, 徐正卜. 光电倍增管[M]. 北京: 原子能出版社, 1988.
CHEN C J, XV Z P. Photomultiplier[M]. Beijing: Atomic Energy Press, 1988. (in Chinese)
赵文锦. 光电倍增管的技术发展状态[J]. 光电子技术, 2011, 31(3): 145-148.
ZHAO W J. Developments in technology of photomultipliers[J]. Optoelect. Technol., 2011, 31(3): 145-148. (in Chinese)
胡浪, 张开琪, 曾国强, 等. CsI(Tl)晶体的APD前端读出特性研究[J]. 核技术, 2016, 39(10): 41-45.
HU L, ZHANG K Q, ZENG G Q, et al. Characteristics study on the APD-based front-end readout for CsI(Tl) detector[J]. Nucl. Tech., 2016, 39(10): 41-45. (in Chinese)
SCAFE R, PANI R, PELLEGRINI R, et al. Si-APD readout for LaBr3∶Ce scintillator[J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 2007, 571(1-2): 355-357.
LI Y D, GE L Q, SUN K, et al. Energy spectrum response of a CsI(Tl) detector read out by an APD[J]. J. Instrum., 2020, 15(5): T05005.
SCHOTANUS P, DORENBOS P, RYZHIKOV V D. Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes[J]. IEEE Trans. Nucl. Sci., 1992, 39(4): 546-550.
AXE J D, SOROKIN P P. Divalent rare earth spectra selection rules and spectroscopy of SrCl2∶Sm2+[J]. Phys. Rev., 1963, 130(3): 945-952.
WOOD D L, KAISER W. Absorption and fluorescence of Sm2+ in CaF2, SrF2 and BaF2[J]. Phys. Rev., 1962, 126(6): 2079-2088.
BRON W E, HELLER W R. Rare-earth ions in the alkali halides. I. Emission spectra of Sm2+-vacancy complex[J]. Phys. Rev., 1964, 136(5A): A1433-A1444.
WICKLEDER C. Spectroscopic properties of SrZnCl4∶M2+ and BaZnCl4∶M2+ (M=Eu,Sm,Tm)[J]. J. Alloys Compd., 2000, 300-301: 193-198.
KARBOWIAK M, SOLARZ P, LISIECKI R, et al. Optical spectra and excited state relaxation dynamics of Sm2+ ions in SrCl2, SrBr2 and SrI2 crystals[J]. J. Lumin., 2018, 195: 159-165.
KARBOWIAK M, URBANOWICZ A, REID M F. 4f6→4f55d1 absorption spectrum analysis of Sm2+∶SrCl2[J]. Phys. Rev. B, 2007, 76(11): 115125-1-9.
DIXIE L C, EDGAR A, REID M F. Sm2+ fluorescence and absorption in cubic BaCl2:strong thermal crossover of fluorescence between 4f6 and 4f55d1 configurations[J]. J. Lumin., 2012, 132(10): 2775-2782.
GLODO J, FARRELL R, VAN LOEF E V D, et al. LaBr3∶Pr3+ —a new red-emitting scintillator[C]. IEEE Nuclear Science Symposium Conference Record, 2005, Fajardo, 2005: 98-101.
SHEN Y R, BRAY K L. Effect of pressure and temperature on 4f-4f luminescence properties of Sm2+ ions in MFCl crystals (M=Ba, Sr, and Ca)[J]. Phys. Rev. B, 1998, 58(18): 11944-11958.
DIXIE L, EDGAR A, BARTLE M. Luminescence and X-ray phosphor properties of samarium and lanthanum-doped cubic barium chloride[J]. Phys. Status Solidi, 2011, 8(1): 132-135.
DIXIE L C, EDGAR A, BARTLE M C. Spectroscopic and radioluminescence properties of two bright X-ray phosphors:strontium barium chloride doped with Eu2+ or Sm2+ ions[J]. J. Lumin., 2014, 149: 91-98.
KUROSAWA S, AN L Q, YAMAJI A, et al. Scintillation properties of Nd3+-doped Lu2O3 ceramics in the visible and infrared regions[J]. IEEE Trans. Nucl. Sci., 2014, 61(1): 316-319.
DIXIE L C, EDGAR A, BARTLE C M. Samarium doped calcium fluoride:a red scintillator and X-ray phosphor[J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 2014, 753: 131-137.
ALEKHIN M S, AWATER R H P, BINER D A, et al. Luminescence and spectroscopic properties of Sm2+ and Er3+ doped SrI2[J]. J. Lumin., 2015, 167: 347-351.
KODAMA S, KUROSAWA S, OHNO M, et al. Development of a novel red-emitting cesium hafnium iodide scintillator[J]. Radiat. Meas., 2019, 124: 54-58.
VAN'T SPIJKER J C, DORENBOS P, ALLIER C P, et al. Lu2S3∶Ce3+, a new red luminescing scintillator[J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 1998, 134(2): 304-309.
张明荣. 非氟卤化物闪烁晶体的研究现状和发展趋势[J]. 人工晶体学报, 2020, 49(5): 753-770.
ZHANG M R. Research status and development trend of non-fluorinated halide scintillation crystals[J]. J. Synth. Cryst., 2020, 49(5): 753-770. (in Chinese)
张迪, 魏钦华, 林佳, 等. Cs4SrI6∶Eu晶体的生长和闪烁性能研究[J]. 人工晶体学报, 2020, 49(5): 774-779.
ZHANG D, WEI Q H, LIN J, et al. Growth and scintillation properties of Cs4SrI6∶Eu crystal[J]. J. Synth. Cryst., 2020, 49(5): 774-779. (in Chinese)
AWATER R H P, ALEKHIN M S, BINER D A, et al. Converting SrI2∶Eu2+ into a near infrared scintillator by Sm2+ co-doping[J]. J. Lumin., 2019, 212: 1-4.
WOLSZCZAK W, KRÄMER K W, DORENBOS P. CsBa2I5∶Eu2+, Sm2+—the first high-energy resolution black scintillator for γ-ray spectroscopy[J]. Phys. Status Solidi RRL, 2019, 13(9): 1900158.
WOLSZCZAK W, KRÄMER K W, DORENBOS P. Engineering near-infrared emitting scintillators with efficient Eu2+ → Sm2+ energy transfer[J]. J. Lumin., 2020, 222: 117101.
VAN AARLE C, KRÄMER K W, DORENBOS P. The role of Yb2+ as a scintillation sensitiser in the near-infrared scintillator CsBa2I5∶Sm2+[J]. J. Lumin., 2021, 238: 118257.
秦来顺, 史宏声, 舒康颖, 等. 新型闪烁晶体SrI2∶Eu及研究进展[J]. 硅酸盐学报, 2010, 38(10): 1977-1981.
QIN L S, SHI H S, SHU K Y, et al. Research progress of a new scintillation crystal SrI2∶Eu[J]. J. Chin. Ceramic Soc., 2010, 38(10): 1977-1981. (in Chinese)
ALEKHIN M S, BINER D A, KRÄMER K W, et al. Optical and scintillation properties of CsBa2I5∶Eu2+[J]. J. Lumin., 2014, 145: 723-728.
许少鸿. 固体发光[M]. 北京: 清华大学出版社, 2011.
XV S H. Solid Light[M]. Beijing: Tsinghua University Press, 2011. (in Chinese)
BLASSE G, GRABMAIER B C. Luminescent Materials[M]. Berlin: Springer-Verlag, 1994.
楼立人, 尹民, 李清庭. 发光物理基础:固体光跃迁过程[M]. 合肥: 中国科学技术大学出版社, 2014.
LOU L R, YIN M, LI Q T. Fundamentals of Luminescence Physics:Optical Transition Processes in Solids[M]. Hefei: University of Science and Technology of China Press, 2014. (in Chinese)
DEXTER D L. A theory of sensitized luminescence in solids[J]. J. Chem. Phys., 1953, 21(5): 836-850.
WUY T, HAN D, CHAKOUMAKOS B C, et al. Zero-dimensional Cs4EuX6 (X=Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy[J]. J. Mater. Chem. C, 2018, 6(25): 6647-6655.
LINDSEY A C, ZHURAVLEVA M, STAND L, et al. Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator[J]. Opt. Mater., 2015, 48: 1-6.
STRACUZZI L M S. Discovery and Development of Potassium-based Metal Halide Scintillators for Radiation Detection Applications[D]. Knoxville: University of Tennessee, 2018.
KIM H J, ROOH G, KHAN A, et al. Scintillation performance of the TlSr2I5 (Eu2+) single crystal[J]. Opt. Mater., 2018, 82: 7-10.
张克从, 张乐潓. 晶体生长科学与技术[M]. 第2版. 北京: 科学出版社, 1997.
ZHANG K C, ZHANG L H. Science and Technology of Crystal Growth[M]. 2nd ed. Beijing: Science Press, 1997. (in Chinese)
0
Views
194
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution