浏览全部资源
扫码关注微信
1.上海大学 理学院,上海 200444
2.中国科学院上海光学精密机械研究所 强场激光物理国家重点实验室,上海 201800
Published:01 November 2021,
Received:05 August 2021,
Revised:30 August 2021,
移动端阅览
QIONG-QIONG ZHAO, WEI YUAN, JUAN DU, et al. Ultrafast Electron Dynamics in Gold Films Probed by Near-infrared Femtosecond Laser. [J]. Chinese journal of luminescence, 2021, 42(11): 1787-1794.
QIONG-QIONG ZHAO, WEI YUAN, JUAN DU, et al. Ultrafast Electron Dynamics in Gold Films Probed by Near-infrared Femtosecond Laser. [J]. Chinese journal of luminescence, 2021, 42(11): 1787-1794. DOI: 10.37188/CJL.20210262.
利用超快泵浦探测技术,研究了近红外飞秒强激光脉冲作用下,金膜中的超快电子动力学过程。研究发现,800 nm飞秒激光激发后,金膜的瞬态反射率存在一个下降过程。通过对金膜的瞬态反射率光谱进行分析和模拟,发现主要是自由电子弛豫和带间双光子跃迁这两种电子动力学过程综合作用的结果。利用双温模型,模拟了800 nm飞秒激光作用下金膜的温度弛豫和瞬态反射率变化过程,理论计算结果与实验结果符合良好。
Using ultrafast pump-probe technology
the ultrafast electron dynamics in gold films are investigated by near-infrared femtosecond laser. Transient reflectivity decrease after the 800 nm femtosecond laser excitation is observed. By analyzing and simulating the transient reflectivity spectrum difference
we found that it is mainly the result from the combined action of two kinds of electron dynamics: free electron relaxation and interband two-photon transitions. The two-temperature model is used to simulate the temperature relaxation and transient reflectivity difference
and the simulated results are in good agreement with the experimental results.
泵浦探测技术近红外飞秒激光金膜超快电子动力学瞬态反射率
pump-probe technologynear-infrared femtosecond lasergold filmultrafast electron dynamicstransient reflectivity
ZHANG Y, CHEN J K. Melting and resolidification of gold film irradiated by nano-to femtosecond lasers[J]. Appl. Phys. A, 2007, 88(2): 289-297.
CHEN A M, XU H F, JIANG Y F, et al. Modeling of femtosecond laser damage threshold on the two-layer metal films[J]. Appl. Surf. Sci., 2010, 257(5): 1678-1683.
POOLE P, TRENDAFILOV S, SHVETS G, et al. Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems[J]. Opt. Express, 2013, 21(22): 26341-26351.
GONG Y, JOLY A G, HU D H, et al. Ultrafast imaging of surface plasmons propagating on a gold surface[J]. Nano Lett., 2015, 15(5): 3472-3478.
WANG L L, KONG F Y, XIA Z L, et al. Evaluation of femtosecond laser damage to gold pulse compression gratings fabricated by magnetron sputtering and e-beam evaporation[J]. Appl. Opt., 2017, 56(11): 3087-3095.
CHENG K, LIU J K, CAO K Q, et al. Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film[J]. Phys. Rev. B, 2018, 98(18): 184106-1-15.
KRUGLYAK V V, HICKEN R J, MATOUSEK P, et al. Spectroscopic study of optically induced ultrafast electron dynamics in gold[J]. Phys. Rev. B, 2007, 75(3): 035410-1-6.
OLBRICH M, PFLUG T, WÜSTEFELD C, et al. Hydrodynamic modeling and time-resolved imaging reflectometry of the ultrafast laser-induced ablation of a thin gold film[J]. Opt. Lasers Eng., 2020, 129: 106067.
WANG P J, SHEN C C, CHOU K Y, et al. Studying time-dependent contribution of hot-electron versus lattice-induced thermal-expansion response in ultra-thin Au-nanofilms[J]. Appl. Phys. Lett., 2020, 117(15): 154101-1-3.
HOHLFELD J, WELLERSHOFF S S, GÜDDE J, et al. Electron and lattice dynamics following optical excitation of metals[J]. Chem. Phys., 2000, 251(1-3): 237-258.
GUO L, XU X F. Ultrafast spectroscopy of electron-phonon coupling in gold[J]. J. Heat Trans., 2014, 136(12): 122401-1-6.
CHEN A M, SUI L Z, SHI Y, et al. Ultrafast investigation of electron dynamics in the gold-coated two-layer metal films[J]. Thin Solid Films, 2013, 529: 209-216.
KOLOMENSKII A A, MUELLER R, WOOD J, et al. Femtosecond electron-lattice thermalization dynamics in a gold film probed by pulsed surface plasmon resonance[J]. Appl. Opt., 2013, 52(30): 7352-7359.
SHEPELEV V V, INOGAMOV N A, FORTOVA S V, et al. Thermal and dynamic effects of laser irradiation of thin metal films[J]. Opt. Quant. Electron., 2020, 52(2): 88-1-21.
SMIRNOV N A. Copper, gold, and platinum under femtosecond irradiation:results of first-principles calculations[J]. Phys. Rev. B, 2020, 101(9): 094103-1-11.
PETEK H, OGAWA S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals[J]. Prog. Surf. Sci., 1997, 56(4): 239-310.
SMITH A N, NORRIS P M. Influence of intraband transitions on the electron thermoreflectance response of metals[J]. Appl. Phys. Lett., 2001, 78(9): 1240-1242.
REUTZEL M, LI A D, PETEK H. Above-threshold multiphoton photoemission from noble metal surfaces[J]. Phys. Rev. B, 2020, 101(7): 075409-1-10.
DU J, LI Z H, XUE B, et al. Ultrafast pre-breakdown dynamics in Al2O3/SiO2 reflector by femtosecond UV laser spectroscopy[J]. Opt. Express, 2015, 23(13): 17653-17658.
FOX M. Optical Properties of Solids[M]. New York: Oxford University Press, 2001.
郝秋龙. 飞秒激光辐照下金属及半导体薄膜温升机理的研究[D]. 成都: 四川大学, 2007.
HAO Q L. Temperature Rise Mechanics of Thin Metal and Semiconductor Films Irradiated by Femtosecond Pulse Laser[D]. Chengdu: Sichuan University, 2007. (in Chinese)
GROENEVELD R H M, SPRIK R, LAGENDIJK A. Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals[J]. Phys. Rev. B, 1992, 45(9): 5079-5082.
NG A, STERNE P, HANSEN S, et al. dc conductivity of two-temperature warm dense gold[J]. Phys. Rev. E, 2016, 94(3): 033213.
SUSLOVA A, HASSANEIN A. Numerical simulation of ballistic electron dynamics and heat transport in metallic targets exposed to ultrashort laser pulse[J]. J. Appl. Phys., 2018, 124(6): 065108-1-11.
NAGHILOU A, HE M, SCHUBERT J S, et al. Femtosecond laser generation of microbumps and nanojets on single and bilayer Cu/Ag thin films[J]. Phys. Chem. Chem. Phys., 2019, 21(22): 11846-11860.
ANISIMOV S I, KAPELIOVICH B L, PEREL'MAN T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. J. Exp. Theor. Phys., 1974, 39: 375-377.
FUJIMOTO J G, LIU J M, IPPEN E P, et al. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures[J]. Phys. Rev. Lett., 1984, 53(19): 1837-1840.
MARKOVIC M I, RAKIC A D. Determination of optical properties of aluminum including electron reradiation in the Lorentz-Drude model[J]. Opt. Laser Technol., 1990, 22(6): 394-398.
MARKOVIC M I, RAKIC A D. Determination of the reflection coefficients of laser light of wavelengths λ∈(0.22 μm, 200 μm) from the surface of aluminum using the Lorentz-Drude model[J]. Appl. Opt., 1990, 29(24): 3479-3483.
HUMMEL R E. Electronic Properties of Materials[M]. New York: Springer, 2011.
0
Views
363
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution