浏览全部资源
扫码关注微信
浙江工业大学 材料科学与工程学院,浙江 杭州 310014
Published:01 November 2021,
Received:02 July 2021,
Revised:24 July 2021,
移动端阅览
XIAO-XIONG HE, HAO ZHOU, QING-QUAN HE, et al. Research Progress of Lead Halide Perovskite Nanocrystals Stabilized by Surface Coating. [J]. Chinese journal of luminescence, 2021, 42(11): 1701-1721.
XIAO-XIONG HE, HAO ZHOU, QING-QUAN HE, et al. Research Progress of Lead Halide Perovskite Nanocrystals Stabilized by Surface Coating. [J]. Chinese journal of luminescence, 2021, 42(11): 1701-1721. DOI: 10.37188/CJL.20210223.
铅卤化物钙钛矿纳米晶具有高光致发光量子产率、窄发光半峰宽、可调带隙、高载流子迁移率等优异的光电性能,使其在太阳能电池、发光二极管、激光发射和X射线成像等光电领域均有巨大的应用前景。然而,由于铅卤化物钙钛矿离子化合物的本征特性,其在水分、光照和温度等环境条件下易发生相变或分解而影响其稳定性。稳定性问题已成为限制钙钛矿纳米晶材料商业化应用的最大障碍。近年来,研究人员报道了多种稳定钙钛矿纳米晶的方法,取得了显著成果。本文介绍了钙钛矿结构及其不稳定性的原因,详细概括了利用高分子、无机物、多孔材料,异质结等多种表面包覆策略来稳定卤化物钙钛矿纳米晶的研究进展,并展望了表面包覆的进一步设计思路。
Lead halide perovskite nanocrystals are emerging semiconductor materials in the past decade
exhibiting excellent optoelectronic properties
such as high photoluminescence quantum yield
narrow emission
tunable emission peak position
and high carrier mobility. They show great application prospects in the fields of solar cells
light-emitting diodes
lasers
and X-ray scintillators. However
lead halide perovskite materials easily undergo phase transformation or decomposition under the ambient conditions including water
light
and/or high temperature due to the inherent characteristics of perovskite ionic compounds. Stability is the biggest obstacle limiting the commercialization of perovskite nanocrystals. In recent years
many methods for stabilizing perovskite nanocrystals have been reported. In this review
the structures and the causes of instability of perovskite nanocrystals
as well as the strategies for forming composite materials to stabilize the nanocrystals by surface coating including macromolecule
inorganic matter
porosint
and heterojunction are summarized in detail. Some perspectives about the stabilization of perovskite nanocrystals are also proposed.
钙钛矿纳米晶表面包覆稳定性复合材料
perovskitenanocrystalssurface coatingstabilitycomposite materials
CHEN Y K, JING H R, LING F L, et al. Tuning the electronic structures of all-inorganic lead halide perovskite CsPbI3 via heterovalent doping: a first-principles investigation[J]. Chem. Phys. Lett., 2019, 722: 90-95.
LAAMARI M E, CHEKNANE A, BENGHIA A, et al. Optimized opto-electronic and mechanical properties of orthorhombic methylamunium lead halides (MAPbX3) (X=I, Br and Cl) for photovoltaic applications[J]. Sol. Energy, 2019, 182: 9-15.
BERCEGOL A, ORY D, SUCHET D, et al. Quantitative optical assessment of photonic and electronic properties in halide perovskite[J]. Nat. Commun., 2019, 10(1): 1586-1-8.
ZHANG F Y, YANG B, LI Y J, et al. Extra long electron-hole diffusion lengths in CH3NH3PbI3-xClx perovskite single crystals[J]. J. Mater. Chem. C, 2017, 5(33): 8431-8435.
陈薪羽, 解俊杰, 王炜, 等. 钙钛矿材料组分调控策略及其光电器件性能研究进展[J]. 化学学报, 2019, 77(1): 9-23.
CHEN X Y, XIE J J, WANG W, et al. Research progress of compositional controlling strategy to perovskite for high performance solar cells[J]. Acta Chim. Sinica, 2019, 77(1): 9-23. (in Chinese)
TONG J H, SONG Z N, KIM D H, et al. Carrier lifetimes of > 1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells[J]. Science, 2019, 364(6439): 475-479.
ZHAO Y X, ZHU K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chem. Soc. Rev., 2016, 45(3): 655-689.
ZHANG T Y, DAR M I, LI G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells[J]. Sci. Adv., 2017, 3(9): e1700841-1-6.
WANG Y, ZHANG T Y, KAN M, et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations[J]. Joule, 2018, 2(10): 2065-2075.
张太阳, 赵一新. 铅卤钙钛矿敏化型太阳能电池的研究进展[J]. 化学学报, 2015, 73(3): 202-210.
ZHANG T Y, ZHAO Y X. Recent progress of lead halide perovskite sensitized solar cells[J]. Acta Chim. Sinica, 2015, 73(3): 202-210. (in Chinese)
LIU J Q, HE Q Q, BI J Y, et al. Remarkable quality improvement of CsPbIBr2 perovskite film by cellulose acetate addition for efficient and stable carbon-based inorganic perovskite solar cells[J]. Chem. Eng. J., 2021, 424: 130324.
WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chem. Soc. Rev., 2019, 48(1): 310-350.
XU L J, WORKU M, HE Q Q, et al. Ligand-mediated release of halides for color tuning of perovskite nanocrystals with enhanced stability[J]. J. Phys. Chem. Lett., 2019, 10(19): 5836-5840.
WEI H T, HUANG J S. Halide lead perovskites for ionizing radiation detection[J]. Nat. Commun., 2019, 10(1): 1066-1-12.
XU L J, PLAVIAK A, LIN X S, et al. Metal halide regulated photophysical tuning of zero-dimensional organic metal halide hybrids:from efficient phosphorescence to ultralong afterglow[J]. Angew. Chem. Int. Ed., 2020, 59(51): 23067-23071.
WANG K Y, WANG S, XIAO S M, et al. Recent advances in perovskite micro- and nanolasers[J]. Adv. Opt. Mater., 2018, 6(18): 1800278-1-27.
SENANAYAK S P, YANG B Y, THOMAS T H, et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors[J]. Sci. Adv., 2017, 3(1): e1601935-1-10.
HE Q Q, ZHOU C K, XU L J, et al. Highly stable organic antimony halide crystals for X-ray scintillation[J]. ACS Mater. Lett., 2020, 2(6): 633-638.
XU L J, LIN X S, HE Q Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide[J]. Nat. Commun., 2020, 11(1): 4329-1-7.
AKKERMAN Q A, RAINÒ G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nat. Mater., 2018, 17(5): 394-405.
ZHOU Y Q, XU J, LIU J B, et al. Green emission induced by intrinsic defects in all-inorganic perovskite CsPb2Br5[J]. J. Phys. Chem. Lett., 2019, 10(20): 6118-6123.
AHMED G H, EL-DEMELLAWI J K, YIN J, et al. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation[J]. ACS Energy Lett., 2018, 3(10): 2301-2307.
DUTTA A, DUTTA S K, DAS ADHIKARI S, et al. Tuning the size of CsPbBr3 nanocrystals:all at one constant temperature[J]. ACS Energy Lett., 2018, 3(2): 329-334.
PAN J, QUAN L N, ZHAO Y B, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Adv. Mater., 2016, 28(39): 8718-8725.
PAN J, SHANG Y Q, YIN J, et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J]. J. Am. Chem. Soc., 2018, 140(2): 562-565.
HE Q Q, WORKU M, LIU H, et al. Highly efficient and stable perovskite solar cells enabled by low-cost industrial organic pigment coating[J]. Angew. Chem. Int. Ed., 2021, 60(5): 2485-2492.
WORKU M, HE Q Q, XU L J, et al. Phase control and in situ passivation of quasi-2D metal halide perovskites for spectrally stable blue light-emitting diodes[J]. ACS Appl. Mater. Interfaces, 2020, 12(40): 45056-45063.
HE Q Q, WORKU M, XU L J, et al. Surface passivation of perovskite thin films by phosphonium halides for efficient and stable solar cells[J]. J. Mater. Chem. A, 2020, 8(4): 2039-2046.
PAN J, SARMAH S P, MURALI B, et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission[J]. J. Phys. Chem. Lett., 2015, 6(24): 5027-5033.
SETH S, AHMED T, DE A, et al. Tackling the defects, stability, and photoluminescence of CsPbX3 perovskite nanocrystals[J]. ACS Energy Lett., 2019, 4(7): 1610-1618.
XU L J, LIN H R, XU Z T, et al. Highly emissive and stable organic-perovskite nanocomposite thin films with phosphonium passivation[J]. J. Phys. Chem. Lett., 2019, 10(19): 5923-5928.
YAN D D, SHI T C, ZANG Z G, et al. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification[J]. Small, 2019, 15(23): 1901173-1-11.
HE Q Q, WORKU M, XU L J, et al. Facile formation of 2D-3D heterojunctions on perovskite thin film surfaces for efficient solar cells[J]. ACS Appl. Mater. Interfaces, 2020, 12(1): 1159-1168.
ZHENG X P, HOU Y, SUN H T, et al. Reducing defects in halide perovskite nanocrystals for light-emitting applications[J]. J. Phys. Chem. Lett., 2019, 10(10): 2629-2640.
LU M, ZHANG X Y, ZHANG Y, et al. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices[J]. Adv. Mater., 2018, 30(50): 1804691-1-6.
LU M, ZHANG X Y, BAI X, et al. Spontaneous silver doping and surface passivation of CsPbI3 perovskite active layer enable light-emitting devices with an external quantum efficiency of 11.2%[J]. ACS Energy Lett., 2018, 3(7): 1571-1577.
LIU Y F, ZHU Y F, ALAHAKOON S B, et al. Synthesis of imine-based covalent organic frameworks catalyzed by metal halides and in situ growth of perovskite@COF composites[J]. ACS Mater. Lett., 2020, 2(12): 1561-1566.
LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat[J]. Angew. Chem. Int. Ed., 2017, 56(36): 10696-10701.
BHATTACHARYYA S, RAMBABU D, MAJI T K. Mechanochemical synthesis of a processable halide perovskite quantum dot-MOF composite by post-synthetic metalation[J]. J. Mater. Chem. A, 2019, 7(37): 21106-21111.
ZHANG C Y, WANG B, LI W B, et al. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption[J]. Nat. Commun., 2017, 8(1): 1138-1-9.
LI X M, CAO F, YU D J, et al. All inorganic halide perovskites nanosystem:synthesis, structural features, optical properties and optoelectronic applications[J]. Small, 2017, 13(9): 1603996-1-24.
LI C, LU X G, DING W Z, et al. Formability of ABX3 (X=F, Cl, Br, I) halide perovskites[J]. Acta Crystallogr. B, 2008, 64(Pt 6): 702-707.
KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358(6364): 745-750.
STOUMPOS C C, KANATZIDIS M G. The renaissance of halide perovskites and their evolution as emerging semiconductors[J]. Acc. Chem. Res., 2015, 48(10): 2791-2802.
JU M G, DAI J, MA L, et al. Lead-free mixed tin and germanium perovskites for photovoltaic application[J]. J. Am. Chem. Soc., 2017, 139(23): 8038-8043.
RUAN L F, SHEN W, WANG A F, et al. Stable and conductive lead halide perovskites facilitated by X-type ligands[J]. Nanoscale, 2017, 9(21): 7252-7259.
YANG D D, LI X M, ZENG H B. Surface chemistry of all inorganic halide perovskite nanocrystals:passivation mechanism and stability[J]. Adv. Mater. Interfaces, 2018, 5(8): 1701662-1-13.
RAVI V K, SANTRA P K, JOSHI N, et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes[J]. J. Phys. Chem. Lett., 2017, 8(20): 4988-4994.
DE ROO J, IBÁÑEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016, 10(2): 2071-2081.
HOU Y, ZHOU Z R, WEN T Y, et al. Enhanced moisture stability of metal halide perovskite solar cells based on sulfur-oleylamine surface modification[J]. Nanoscale Horiz., 2019, 4(1): 208-213.
HUANG S Q, LI Z C, WANG B, et al. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination[J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7249-7258.
LIU Y, LI F, LIU Q L, et al. Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X=Cl, Br, I) perovskite nanocrystals[J]. Chem. Mater., 2018, 30(19): 6922-6929.
HUANG H H, MA Z Y, STRZALKA J, et al. Mild water intake orients crystal formation imparting high tolerance on unencapsulated halide perovskite solar cells[J]. Cell Rep. Phys. Sci., 2021, 2(4): 100395.
LEGUY A M A, HU Y H, CAMPOY-QUILES M, et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells[J]. Chem. Mater., 2015, 27(9): 3397-3407.
KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012, 2: 591-1-7.
LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647.
ABDOU M S A, ORFINO F P, SON Y, et al. Interaction of oxygen with conjugated polymers:charge transfer complex formation with poly(3-alkylthiophenes)[J]. J. Am. Chem. Soc., 1997, 119(19): 4518-4524.
KAUTSKY H. Quenching of luminescence by oxygen[J]. Trans. Faraday Soc., 1939, 35(35): 216-219.
ARISTIDOU N, EAMES C, SANCHEZ-MOLINA I, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells[J]. Nat. Commun., 2017, 8: 15218-1-10.
HUANG H, BODNARCHUK M I, KERSHAW S V, et al. Lead halide perovskite nanocrystals in the research spotlight:stability and defect tolerance[J]. ACS Energy Lett., 2017, 2(9): 2071-2083.
WEI Y, DENG X R, XIE Z X, et al. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance[J]. Adv. Funct. Mater., 2017, 27(39): 1703535-1-8.
ZHOU Q C, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Adv. Mater., 2016, 28(41): 9163-9168.
YANG L, FU B W, LI X, et al. Poly(vinylidene fluoride)-passivated CsPbBr3 perovskite quantum dots with near-unity photoluminescence quantum yield and superior stability[J]. J. Mater. Chem. C, 2021, 9(6): 1983-1991.
WANG Y N, HE J, CHEN H, et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films[J]. Adv. Mater., 2016, 28(48): 10710-10717.
CHA W, KIM H J, LEE S, et al. Size-controllable and stable organometallic halide perovskite quantum dots/polymer films[J]. J. Mater. Chem. C, 2017, 5(27): 6667-6671.
LI H M, LIN H, OUYANG D, et al. Efficient and stable red perovskite light-emitting diodes with operational stability >300 h[J]. Adv. Mater., 2021, 33(15): 2008820.
SHI J D, GE W Y, GAO W X, et al. Enhanced thermal stability of halide perovskite CsPbX3 nanocrystals by a facile TPU encapsulation[J]. Adv. Opt. Mater., 2020, 8(4): 1901516-1-9.
HE Q Y, MEI E R, LIANG X J, et al. Ultrastable PVB films-protected CsPbBr3/Cs4PbBr6 perovskites with high color purity for nearing Rec. 2020 standard[J]. Chem. Eng. J., 2021, 419: 129529.
DA SILVA J C, DE ARAUJO F L, SZOSTAK R, et al. Effect of the incorporation of poly(ethylene oxide) copolymer on the stability of perovskite solar cells[J]. J. Mater. Chem. C, 2020, 8(28): 9697-9706.
WANG Q, WANG J, WANG J C, et al. Coupling CsPbBr3 quantum dots with covalent triazine frameworks for visible-light-driven CO2 reduction[J]. ChemSusChem, 2021, 14(4): 1131-1139.
KOUR P, MUKHERJEE S P. CsPbBr3/Cs4PbBr6 perovskite@COF nanocomposites for visible-light-driven photocatalytic applications in water[J]. J. Mater. Chem. A, 2021, 9(11): 6819-6826.
SHEN X P, WANG M Y, ZHOU F C, et al. Improved air-stability of an organic-inorganic perovskite with anhydrously transferred grapheme[J]. J. Mater. Chem. C, 2018, 32(6): 8663-8669.
LIN C H, LYU Z S, ZHOU Y T, et al. Microwave synthesis and high-mobility charge transport of carbon-nanotube-in-perovskite single crystals[J]. Adv. Opt. Mater., 2020, 8(24): 2001740-1-10.
GONG W, LI H, GONG X M, et al. Fabrication of amine functionalized CdSe@SiO2 nanoparticles as fluorescence nanosensor for highly selective and sensitive detection of picric acid[J]. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2020, 233: 118221.
GUAN Y X, YANG Y X, WANG X X, et al. Multifunctional Fe3O4@SiO2-CDs magnetic fluorescent nanoparticles as effective carrier of gambogic acid for inhibiting VX2 tumor cells[J]. J. Mol. Liq., 2021, 327: 114783.
CAO N, ZHAO F Q, ZENG B Z. A novel self-enhanced electrochemiluminescence sensor based on PEI-CdS/Au@SiO2@RuDS and molecularly imprinted polymer for the highly sensitive detection of creatinine[J]. Sens. Actuators B:Chem., 2020, 306: 127591-1-7.
WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display[J]. Angew. Chem. Int. Ed., 2016, 55(28): 7924-7929.
CAO P Y, YANG B B, ZHENG F, et al. High stability of silica-wrapped CsPbBr3 perovskite quantum dots for light emitting application[J]. Ceram. Int., 2020, 46(3): 3882-3888.
HUANG S Q, LI Z C, KONG L, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene[J]. J. Am. Chem. Soc., 2016, 138(18): 5749-5752.
PARK D H, HAN J S, KIM W, et al. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut[J]. Dyes Pigments, 2018, 149: 246-252.
TANG X S, CHEN W W, LIU Z Z, et al. Ultrathin, core-shell structured SiO2 coated Mn2+-doped perovskite quantum dots for bright white light-emitting diodes[J]. Small, 2019, 15(19): 1900484-1-11.
YANG C B, ZHUANG B, LIN J D, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display[J]. Chem. Eng. J., 2020, 398: 125616.
EROL E, KIBRISLI O, ERSUNDU M Ç, et al. Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites[J]. Chem. Eng. J., 2020, 401: 126053.
SUN J Y, RABOUW F T, YANG X F, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3(X=Cl, Br, and I) Zeolite-Y composite phosphors for potential backlight display application[J]. Adv. Funct. Mater., 2017, 27(45): 1704371-1-8.
WANG P J, WANG B L, LIU Y C, et al. Ultrastable perovskite-zeolite composite enabled by encapsulation and in situ passivation[J]. Angew. Chem. Int. Ed., 2020, 59(51): 23100-23106.
ZHANG Q G, WANG B, ZHENG W L, et al. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates[J]. Nat. Commun., 2020, 11(1): 31-1-9.
WEI Y, XIAO H, XIE Z X, et al. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes[J]. Adv. Opt. Mater., 2018, 6(11): 1701343-1-8.
YANG G L, FAN Q S, CHEN B K, et al. Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability[J]. J. Mater. Chem. C, 2016, 4(48): 11387-11391.
LOU S Q, XUAN T T, YU C Y, et al. Nanocomposites of CsPbBr3 perovskite nanocrystals in an ammonium bromide framework with enhanced stability[J]. J. Mater. Chem. C, 2017, 5(30): 7431-7435.
GUHRENZ C, BENAD A, ZIEGLER C, et al. Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals[J]. Chem. Mater., 2016, 28(24): 9033-9040.
YANG J N, SONG Y, YANG J S, et al. Potassium bromide surface passivation on CsPbI3-xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes[J]. J. Am. Chem. Soc., 2020, 142(6): 2956-2967.
WAN S P, OU M, ZHONG Q, et al. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction[J]. Chem. Eng. J., 2019, 358: 1287-1295.
WU L Y, MU Y F, GUO X X, et al. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction[J]. Angew. Chem. Int. Ed., 2019, 58(28): 9491-9495.
KONG Z C, LIAO J F, DONG Y J, et al. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction[J]. ACS Energy Lett., 2018, 3(11): 2656-2662.
MOLLICK S, MANDAL T N, JANA A, et al. Ultrastable luminescent hybrid bromide perovskite@MOF nanocomposites for the degradation of organic pollutants in water[J]. ACS Appl. Nano Mater., 2019, 2(3): 1333-1340.
KAMAT P V, PRADHAN N, SCHANZE K, et al. Challenges and opportunities in designing perovskite nanocrystal heterostructures[J]. ACS Energy Lett., 2020, 5(7): 2253-2255.
BERA S, PRADHAN N. Perovskite nanocrystal heterostructures:synthesis, optical properties, and applications[J]. ACS Energy Lett., 2020, 5(9): 2858-2872.
CHEN W W, HAO J Y, HU W, et al. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure[J]. Small, 2017, 13(21): 1604085.
TANG X S, YANG J, LI S Q, et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties[J]. Adv. Sci., 2019, 6(18): 1900412-1-10.
LIU H Y, TAN Y S, CAO M H, et al. Fabricating CsPbX3-based type Ⅰ and type Ⅱ heterostructures by tuning the halide composition of Janus CsPbX3/ZrO2 nanocrystals[J]. ACS Nano, 2019, 13(5): 5366-5374.
IMRAN M, PENG L C, PIANETTI A, et al. Halide perovskite-lead chalcohalide nanocrystal heterostructures[J]. J. Am. Chem. Soc., 2021, 143(3): 1435-1446.
SHI E Z, DOU L T. Halide perovskite epitaxial heterostructures[J]. Acc. Mater. Res., 2020, 1(3): 213-224.
SHI E Z, YUAN B, SHIRING S B, et al. Two-dimensional halide perovskite lateral epitaxial heterostructures[J]. Nature, 2020, 580(7805): 614-620.
LI Z C, KONG L, HUANG S Q, et al. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith[J]. Angew. Chem. Int. Ed., 2017, 56(28): 8134-8138.
LI L L, ZHANG Z Y, CHEN Y, et al. Sustainable and self-enhanced electrochemiluminescent ternary suprastructures derived from CsPbBr3 perovskite quantum dots[J]. Adv. Funct. Mater., 2019, 29(32): 1902533-1-8.
DUAN Y Y, EZQUERRO C, SERRANO E, et al. Meeting high stability and efficiency in hybrid light-emitting diodes based on SiO2/ZrO2 coated CsPbBr3 perovskite nanocrystals[J]. Adv. Funct. Mater., 2020, 30(40): 2005401-1-10.
XU L M, CHEN J W, SONG J Z, et al. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes[J]. ACS Appl. Mater. Interfaces, 2017, 9(31): 26556-26564.
ZHANG X J, WANG H C, TANG A C, et al. Robust and stable narrow-band green emitter:an option for advanced wide-color-gamut backlight display[J]. Chem. Mater., 2016, 28(23): 8493-8497.
0
Views
286
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution