浏览全部资源
扫码关注微信
吉林大学化学学院 无机合成与制备化学国家重点实验室,吉林 长春 130012
Published:01 August 2021,
Received:21 May 2021,
Revised:05 June 2021,
扫 描 看 全 文
Li LI, Xiao-wei YU, Hong-yue ZHANG, et al. Photoluminescent Composite Materials by Embedding Carbon Dots in Zeolites. [J]. Chinese Journal of Luminescence 42(8):1114-1124(2021)
Li LI, Xiao-wei YU, Hong-yue ZHANG, et al. Photoluminescent Composite Materials by Embedding Carbon Dots in Zeolites. [J]. Chinese Journal of Luminescence 42(8):1114-1124(2021) DOI: 10.37188/CJL.20210196.
碳点具有优异的发光特性和广泛的应用,将碳点限域于具有纳米孔道结构的分子筛材料中,可开发出一类新型的碳点@分子筛复合材料。本文聚焦于具有独特发光性能的负载碳点的分子筛复合材料,综述了这类材料最新的研究进展,重点介绍了碳点@分子筛复合材料的制备方法、长余辉发光调控策略及主体分子筛基质对客体碳点的作用等,并对未来光致发光碳点@分子筛复合材料的发展前景进行了展望。
Carbon dots(CDs) possess excellent luminescent properties and a variety of potential applications. Embedding CDs in zeolites with nanoporous structures generates a new class of composite materials with interesting photoluminescence(
e.g.
room temperature phosphorescence and delayed fluorescence). In this review
the recent research progresses of such composite materials
including the preparation strategies for embedding CDs in zeolites
the regulation of afterglow luminescence
and the effects of host zeolite matrix to guest CDs are summarized. Finally
a brief conclusion and the development prospect of CDs@zeolite materials are presented.
碳点分子筛合成发光调控
carbon dotszeolitesynthesisphotoluminescent regulation
XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].J. Am. Chem. Soc., 2004, 126(40): 12736-12737.
BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights [J].Angew. Chem. Int. Ed., 2010, 49(38): 6726-6744.
LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications [J].Chem. Soc. Rev., 2015, 44(1): 362-381.
YAN Y B, GONG J, CHEN J, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications [J].Adv. Mater., 2019, 31(21): 1808283-1-22.
LI Y, HU Y, ZHAO Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics [J].Adv. Mater., 2011, 23(6): 776-780.
GUPTA V, CHAUDHARY N, SRIVASTAVA R, et al. Luminscent graphene quantum dots for organic photovoltaic devices [J].J. Am. Chem. Soc., 2011, 133(26): 9960-9963.
CHEN L J, GUO C X, ZHANG Q M, et al. Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells [J].ACS Appl. Mater. Interfaces, 2013, 5(6): 2047-2052.
TANG L B, JI R B, CAO X K, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots [J].ACS Nano, 2012, 6(6): 5102-5110.
KWON W, DO S, LEE J, et al. Freestanding luminescent films of nitrogen-rich carbon nanodots toward large-scale phosphor-based white-light-emitting devices [J].Chem. Mater., 2013, 25(9): 1893-1899.
LIU W W, FENG Y Q, YAN X B, et al. Superior micro-supercapacitors based on graphene quantum dots [J].Adv. Funct. Mater., 2013, 23(33): 4111-4122.
LIU W W, YAN X B, CHEN J T, et al. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers [J].Nanoscale, 2013, 5(13): 6053-6062.
LI H T, HE X D, KANG Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J].Angew. Chem. Int. Ed., 2010, 49(26): 4430-4434.
ZHUO S J, SHAO M W, LEE S T. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis [J].ACS Nano, 2012, 6(2): 1059-1064.
ZHENG M, XIE Z G, QU D, et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(Ⅵ) and ascorbic acid based on the inner filter effect [J].ACS Appl. Mater. Interfaces, 2013, 5(24): 13242-13247.
LU W B, QIN X Y, LIU S, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(Ⅱ) ions [J].Anal. Chem., 2012, 84(12): 5351-5357.
WEI W L, XU C, REN J S, et al. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene [J].Chem. Commun., 2012, 48(9): 1284-1286.
ZHU A, DING C, TIAN Y. A two-photon ratiometric fluorescence probe for cupric ions in live cells and tissues [J].Sci. Rep., 2013, 3: 2933.
ZHAO H X, LIU L Q, LIU Z D, et al. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots [J].Chem. Commun., 2011, 47(9): 2604-2606.
HUANG X L, ZHANG F, ZHU L, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots [J].ACS Nano, 2013, 7(7): 5684-5693.
SUN Y, CAO W P, LI S L, et al. Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy [J].Sci. Rep., 2013, 3(1): 3036-1-6.
QU S N, WANG X Y, LU Q P, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots [J].Angew. Chem., 2012, 124(49): 12381-12384.
PONOMARENKO L A, SCHEDIN F, KATSNELSON M I, et al. Chaotic dirac billiard in graphene quantum dots [J].Science, 2008, 320(5874): 356-358.
PAN D Y, ZHANG J C, LI Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J].Adv. Mater., 2010, 22(6): 734-738.
DONG Y Q, PANG H C, YANG H B, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission [J].Angew. Chem. Int. Ed., 2013, 52(30): 7800-7804.
DING H, WEI J S, XIONG H M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence [J].Nanoscale, 2014, 6(22): 13817-13823.
ZHU S J, ZHANG J H, WANG L, et al. A general route to make non-conjugated linear polymers luminescent [J].Chem. Commun., 2012, 48(88): 10889-10891.
LAIT T, ZHENG E H, CHEN L X, et al. Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(Ⅲ) [J].Nanoscale, 2013, 5(17): 8015-8021.
XIAO L, SUN H D. Novel properties and applications of carbon nanodots [J].Nanoscale Horiz., 2018, 3(6): 565-597.
WICKLEDER M S. Inorganic lanthanide compounds with complex anions [J].Chem. Rev., 2002, 102(6): 2011-2088.
NARITA K. Luminescence of Ag-exchanged zeolite 13X [J].J. Lumin., 1971, 4(2): 73-80.
KASAI P H. Electron spin resonance studies of γ-and X-ray-irradiated zeolites [J].J. Chem. Phys., 1965, 43(9): 3322-3327.
ANDERSON P A, ARMSTRONG A R, EDWARDS P P. Ionization and delocalization in potassium zeolite L: a combined neutron diffraction and electron spin resonance study [J].Angew. Chem. Int. Ed., 1994, 33(6): 641-643.
LI J Y, WANG B L, ZHANG H Y, et al. Carbon dots-in-matrix boosting intriguing luminescence properties and applications [J].Small, 2019, 15(32): 1805504.
ZHANG H Y, WANG B L, YU X W, et al. Carbon dots in porous materials: host-guest synergy for enhanced performance [J].Angew. Chem. Int. Ed., 2020, 59(44): 19390-19402.
LIU R L, WU D Q, LIU S H, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers [J].Angew. Chem. Int. Ed., 2009, 48(25): 4598-4601.
WANG F, XIE Z, ZHANG H, et al. Highly luminescent organosilane-functionalized carbon dots [J].Adv. Funct. Mater., 2011, 21(6): 1027-1031.
ZHANG H Y, LIU K K, LIU J C, et al. Carbon dots-in-zeolite via in-situ solvent-free thermal crystallization: achieving high-efficiency and ultralong afterglow dual emission [J].CCS Chem., 2020, 2(3): 118-127.
BOURLINOS A B, STASSINOPOULOS A, ANGLOS D, et al. Photoluminescent carbogenic dots [J].Chem. Mater., 2008, 20(14): 4539-4541.
XIU Y, GAO Q, Li G D, et al. Preparation and tunable photoluminescence of carbogenic nanoparticles confined in a microporous magnesium-aluminophosphate [J].Inorg. Chem., 2010, 49(13): 5859-5867.
修洋. 微孔复合材料的制备、表征以及性能研究[D].长春: 吉林大学, 2012.
XIU Y. Preparationlication, Characterization and Application of Microporous Composite Materials [D].Changchun: Jilin University, 2012. (in Chinese)
BALDOVI H G, VALENCIA S, ALVARO M, et al. Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite [J].Nanoscale, 2015, 7(5): 1744-1752.
MU Y, WANG N, SUN Z C, et al. Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence [J].Chem. Sci., 2016, 7(6): 3564-3568.
WANG B L, MU Y, ZHANG C H, et al. Blue photoluminescent carbon nanodots prepared from zeolite as efficient sensors for picric acid detection [J].Sens. Actuators B:Chem., 2017, 253: 911-917.
WANG B L, MU Y, YIN H, et al. Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots [J].Nanoscale, 2018, 10(22): 10650-10656.
WANG Y Y, LI Y, YAN Y, et al. Luminescent carbon dots in a new magnesium aluminophosphate zeolite [J].Chem. Commun., 2013, 49(79): 9006-9008.
MU Y, SHI H, WANG Y, et al. CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites [J].J. Mater. Chem. C, 2017, 5(41): 10894-10899.
XU X T, CHEN J Q, SHI W T, et al. Synthesis of carbon nanodots in zeolite SAPO-46 channels for Q-switched fiber laser generation [J].J. Alloys Compd., 2019, 782, 837-844.
XU X T, CHEN J Q, SHI W T, et al. Zeolite templated carbon nanodots for broadband ultrafast pulsed fiber laser generation [J].Photonics Res., 2019, 7(10): 1182-1187.
LIU J C, WANG N, YU Y, et al. Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes [J].Sci. Adv., 2017, 3(5): e1603171-1-8.
WANG B L, MU Y, ZHANG H Y, et al. Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks [J].ACS Cent. Sci., 2019, 5(2): 349-356.
WANG B L, YU Y, ZHANG H Y, et al. Carbon dots in a matrix: energy-transfer-enhanced room-temperature red phosphorescence [J].Angew. Chem. Int. Ed., 2019, 58(51): 18443-18448.
ZHANG H Y, LIU J C, WANG B L, et al. Zeolite-confined carbon dots: tuning thermally activated delayed fluorescence emission via energy transfer [J].Mater. Chem. Front., 2020, 4(5): 1404-1410.
LIU J C, ZHANG H Y, WANG N, et al. Template-modulated afterglow of carbon dots in zeolites: room-temperature phosphorescence and thermally activated delayed fluorescence [J].ACS Mater. Lett., 2019, 1(1): 58-63.
YU X W, LIU K K, ZHANG H Y, et al. Lifetime-engineered phosphorescent carbon dots-in-zeolite composites for naked-eye visible multiplexing [J].CCS Chem., 2021, 3: 252-264.
0
Views
168
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution