Photoluminescence Enhancement of CsPbBr3 Perovskite Quantum Dots Based on Deep-subwavelength Bilayer Media
返回论文页
Synthesis and Properties of Materials|更新时间:2021-09-13
|
Photoluminescence Enhancement of CsPbBr3 Perovskite Quantum Dots Based on Deep-subwavelength Bilayer Media
增强出版
Chinese Journal of LuminescenceVol. 42, Issue 9, Pages: 1403-1411(2021)
作者机构:
1.中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
2.湖州学院 电子与信息系,浙江 湖州 313000
3.中国科学院大学,北京 100049
4.国科大杭州高等研究院 物理与光电工程学院,浙江 杭州 310024
5.同济大学 物理科学与工程学院,上海 200092
作者简介:
基金信息:
National Key R&D Program of China(2017YFA0205800);National Natural Science Foundation of China(62075231;61471345);Shanghai Science and Technology Committee(20JC1414603)
Wen-chao ZHAO, Zheng-ji WEN, Zi-ji ZHOU, et al. Photoluminescence Enhancement of CsPbBr3 Perovskite Quantum Dots Based on Deep-subwavelength Bilayer Media. [J]. Chinese Journal of Luminescence 42(9):1403-1411(2021)
DOI:
Wen-chao ZHAO, Zheng-ji WEN, Zi-ji ZHOU, et al. Photoluminescence Enhancement of CsPbBr3 Perovskite Quantum Dots Based on Deep-subwavelength Bilayer Media. [J]. Chinese Journal of Luminescence 42(9):1403-1411(2021) DOI: 10.37188/CJL.20210180.
Photoluminescence Enhancement of CsPbBr3 Perovskite Quantum Dots Based on Deep-subwavelength Bilayer Media增强出版
great strides have been made in improving the luminous efficiency of semiconductor materials by using surface plasmon resonance. However
there still exist some disadvantages
such as sophisticated nanofabrication techniques
poor repeatability and so on. Here
a novel ultra-thin
large-area and tunable planar bilayer media is reported
which is composed of deep-subwavelength and high absorptive CuO thin films and Au substrate. Experimental results show that reflectance spectra of CuO/Au bilayer can be sensitively tuned by changing the thickness of CuO film. Compared with the bare quartz based reference sample
photoluminescence (PL) enhancement factor of quantum dots/CuO/Au trilayer can be achieved by up to 7 times. Theoretical analysis shows that PL enhancement effect is attributed to the high efficient absorption caused by Fabry-Perot thin film interference and the accelerated spontaneous emission rate resulted from local field enhancement.
BAEK W, BOOTHARAJU M S, WALSH K M, et al. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters [J].Nat. Mater., 2021, 20(5):650-657.
LU J X, WEI Z H. The strategies for preparing blue perovskite light-emitting diodes [J].J. Semicond., 2020, 41(5):051203.
WU Y, LI X M, ZENG H B. Highly luminescent and stable halide perovskite nanocrystals [J].ACS Energy Lett., 2019, 4(3):673-681.
XIE M C, HAN C M, LIANG Q Q, et al. Highly efficient sky blue electroluminescence from ligand-activated copper iodide clusters:overcoming the limitations of cluster light-emitting diodes [J].Sci. Adv., 2019, 5(6):eaav9857-1-9.
WANG Y, LI X M, SONG J Z, et al. All-inorganic colloidal perovskite quantum dots:a new class of lasing materials with favorable characteristics [J].Adv. Mater., 2015, 27(44):7101-7108.
GUO J X, JIAN J L, WANG D Y, et al. Controlling amplified spontaneous emission of quantum dots by polymerized nanostructure interfaces [J].Opt. Lett., 2020, 45(16):4385-4388.
ZHAO X H, WANG P, LI B J. Surface plasmon enhanced energy transfer in metal-semiconductor hybrid nanostructures [J].Nanoscale, 2011, 3(8):3056-3059.
JUN Y C, PALA R, BRONGERSMA M L. Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits [J].J. Phys. Chem. C, 2010, 114(16):7269-7273.
CHO C H, ASPETTI C O, TURK M E, et al. Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons [J].Nat. Mater., 2011, 10(9):669-675.
ZHAO W Q, TIAN X C R, FANG Z N, et al. Engineering single-molecule fluorescence with asymmetric nano-antennas [J].Light:Sci. Appl., 2021, 10(1):79-1-9.
SUN P, YU W W, PAN X H, et al. Fluorescence enhancement of metal-capped perovskite CH3NH3PbI3 thin films [J].Chin. Phys. Lett., 2017, 34(9):096801-1-4.
MIYAZAKI H T, KUROKAWA Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity [J].Phys. Rev. Lett., 2006, 96(9):097401-1-4.
RUSSELL K J, LIU T L, CUI S, et al. Large spontaneous emission enhancement in plasmonic nanocavities [J].Nat. Photonics, 2012, 6(7):459-462.
CHO C H, ASPETTI C O, PARK J, et al. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence [J].Nat. Photonics, 2013, 7(4):285-289.
NODA S, FUJITA M, ASANO T. Spontaneous-emission control by photonic crystals and nanocavities [J].Nat. Photonics, 2007, 1(8):449-458.
LUXMOORE I J, AHMADI E D, WASLEY N A, et al. Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities [J].Appl. Phys. Lett., 2010, 97(18):181104.
XU W, CHEN X, SONG H W. Manipulation of local electromagnetic field in upconversion luminescence of rare earth ions [J].Chin. J. Lumin., 2018, 39(1):1-26. (in Chinese)
KATS M A, BLANCHARD R, GENEVET P, et al. Nanometre optical coatings based on strong interference effects in highly absorbing media [J].Nat. Mater., 2013, 12(1):20-24.
PAN H, WEN Z J, TANG Z H, et al. Wide gamut, angle-insensitive structural colors based on deep-subwavelength bilayer media [J].Nanophotonics, 2020, 9(10):3385-3392.
KATS M A, BYRNES S J, BLANCHARD R, et al. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings [J].Appl. Phys. Lett., 2013, 103(10):110104-1-4.
WANG Z, WANG X Y, CONG S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities [J].Nat. Commun., 2020, 11(1):302-1-9.
KATS M A, SHARMA D, LIN J, et al. Ultra-thin perfect absorber employing a tunable phase change material [J].Appl. Phys. Lett., 2012, 101(22):221101-1-5.
CHEN Y J, MANDAL J, LI W X, et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling [J].Sci. Adv., 2020, 6(17):eaaz5413-1-8.
CHEN P, LIU Y F, ZHANG Z J, et al. In situ growth of ultrasmall cesium lead bromine quantum dots in a mesoporous silica matrix and their application in flexible light-emitting diodes [J].Nanoscale, 2019, 11(35):16499-16507.
ZHAO W C, WEN Z J, XU Q Q, et al. Remarkable photoluminescence enhancement of CsPbBr3 perovskite quantum dots assisted by metallic thin films [J].Nanophotonics, 2021, 10(8):2257-2264.
FUJIWARA H. Spectroscopic Ellipsometry:Principles and Applications [M].Chichester: Wiley, 2007.
PALIK E D. Handbook of Optical Constants of Solids [M].New York: Academic Press, 1985.
MING T, CHEN H J, JIANG R B, et al. Plasmon-controlled fluorescence:beyond the intensity enhancement [J].J. Phys. Chem. Lett., 2012, 3(2):191-202.
REN Q H, ZHANG Y, LU H L, et al. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al2O3 spacer layer [J].Nanotechnology, 2016, 27(16):165705-1-10.