浏览全部资源
扫码关注微信
郑州大学物理学院 材料物理教育部重点实验室,河南 郑州 450052
Published:01 August 2021,
Received:13 May 2021,
Revised:17 June 2021,
移动端阅览
CHENG-LONG SHEN, QING LOU, CHONG-XIN SHAN. Research Advances in Carbon Dot-based Luminol and Peroxyoxalate Chemiluminescent Systems. [J]. Chinese journal of luminescence, 2021, 42(8): 1215-1232.
CHENG-LONG SHEN, QING LOU, CHONG-XIN SHAN. Research Advances in Carbon Dot-based Luminol and Peroxyoxalate Chemiluminescent Systems. [J]. Chinese journal of luminescence, 2021, 42(8): 1215-1232. DOI: 10.37188/CJL.20210171.
作为一种无需光、热、声、电、磁激发的自发光现象,化学发光已经在化学分析检测、冷光源、生物成像等领域得到了广泛应用。对于多数化学发光体系而言,其化学发光性质不仅取决于化学反应的底物,更与化学反应中使用的催化剂和发光中间体相关。碳点是一种新型的零维发光碳纳米材料,以其优异的物理化学性质和丰富的结构形貌已在各种化学发光体系中获得了广泛的应用。本文主要从鲁米诺和过氧草酸酯两种常见化学发光体系出发,总结了碳点在鲁米诺和过氧草酸酯化学发光体系中的相关研究进展,探讨了碳点在鲁米诺和过氧草酸酯基化学发光中可能存在的作用机制,以及碳点在鲁米诺和过氧草酸酯化学发光体系中的相关应用。为合成具有特定化学发光性能的纳米材料提供思路,有望推动化学发光纳米材料的进一步发展。
As a self-luminescence phenomenon without light
heat
sound
electricity and magnetism excitation
chemiluminescence has been widely used in chemical analysis
cold light source
bioimaging and related fields. For most chemiluminescent systems
their chemiluminescence depends not only on the substrates of chemical reactions
but also on the catalysts and chemiluminescent intermediates. Carbon dots are a new type of zero-dimensional luminescent carbon nanomaterials
which have been widely used in various chemiluminescent systems due to their excellent physicochemical properties
rich structure and morphology. On basis of the chemiluminescent systems of luminol and peroxyoxalate
this paper summarizes the research advances in carbon dot-based luminol and peroxyoxalate chemiluminescent systems
also discusses the possible mechanism and related application of carbon dot-based chemiluminescence in luminol and peroxyoxalate systems
which provides ideas for the synthesis of nanomaterials with specific chemiluminescent properties and promotes the further development of chemiluminescent nanomaterials.
碳点化学发光鲁米诺过氧草酸酯应用
carbon dotschemiluminescenceluminolperoxyoxalateapplication
HUANG J G, LI J C, LYU Y, et al. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury [J].Nat. Mater., 2019, 18(10): 1133-1143.
SHUHENDLER A J, PU K Y, CUI L N, et al. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing [J].Nat. Biotechnol., 2014, 32(4): 373-380.
LIU Y T, SHEN W, LI Q, et al. Firefly-mimicking intensive and long-lasting chemiluminescence hydrogels [J].Nat. Commun., 2017, 8(1): 1003-1-7.
KÖNIG L, RABIN I, SCHULZE W, et al. Chemiluminescence in the agglomeration of metal clusters [J].Science, 1996, 274(5291): 1353-1354.
LIU J C, WANG N, YU Y, et al. Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes [J].Sci. Adv., 2017, 3(5): e1603171-1-9.
CUI D, LI J C, ZHAO X H, et al. Semiconducting polymer nanoreporters for near-infrared chemiluminescence imaging of immunoactivation [J].Adv. Mater., 2020, 32(6): 1906314-1-7.
LEE Y D, Lim C K, SINGH A, et al. Dye/peroxalate aggregated nanoparticles with enhanced and tunable chemiluminescence for biomedical imaging of hydrogen peroxide [J].ACS Nano, 2012, 6(8): 6759-6766.
HANANYA N, SHABAT D. Recent advances and challenges in luminescent imaging: bright outlook for chemiluminescence of dioxetanes in water [J].ACS Cent. Sci., 2019, 5(6): 949-959.
LIU X Q, FREEMAN R, GOLUB E, et al. Chemiluminescence and chemiluminescence resonance energy transfer(CRET) aptamer sensors using catalytic hemin/G-quadruplexes [J].ACS Nano, 2011, 5(9): 7648-7655.
GREEN O, GNAIM S, BLAU R, et al. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode [J].J. Am. Chem. Soc., 2017, 139(37): 13243-13248.
GNAIM S, SHABAT D. Self-immolative chemiluminescence polymers: Innate assimilation of chemiexcitation in a domino-like depolymerization [J].J. Am. Chem. Soc., 2017, 139(29): 10002-10008.
CHEN Y L, SPIERING A J H, KARTHIKEYAN S, et al. Mechanically induced chemiluminescence from polymers incorporating a 1, 2-dioxetane unit in the main chain [J].Nat. Chem., 2012, 4(7): 559-562.
LIM C K, LEE Y D, NA J, et al. Chemiluminescence-generating nanoreactor formulation for near-infrared imaging of hydrogen peroxide and glucose level in vivo [J].Adv. Funct. Mater., 2010, 20(16): 2644-2648.
李斌, 苗蔚荣. 过氧草酸酯类化学发光激发荧光[J].化学通报, 1996 (6): 32-36.
LI B, MIAO W R. Chemiluminescence induced fluorescence of peroxyoxalate [J].Chem. Bull., 1996(6): 32-36. (in Chinese)
支正良, 于山江, 华万森, 等. 过氧草酸酯类化学发光体系的研究进展[J].化学世界, 1997(12): 619-624.
ZHI Z L, YU S J, HUA W S, et al. Research progress of peroxyoxalate chemiluminescence system [J].Chem. World, 1997(12): 619-624. (in Chinese)
GREEN O, EILON T, HANANYA N, et al. Opening a gateway for chemiluminescence cell imaging: distinctive methodology for design of bright chemiluminescent dioxetane probes [J].ACS Cent. Sci., 2017, 3(4): 349-358.
ZHANG Z F, CUI H, LAI C Z, et al. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications [J].Anal. Chem., 2005, 77(10): 3324-3329.
CUI H, ZHANG Z F, SHI M J, et al. Light emission of gold nanoparticles induced by the reaction of bis(2, 4, 6-trichlorophenyl) oxalate and hydrogen peroxide [J].Anal. Chem., 2005, 77(19): 6402-6406.
CHEN H, LIN L, LI H F, et al. Quantum dots-enhanced chemiluminescence: mechanism and application [J].Coord. Chem. Rev., 2014, 263-264: 86-100.
KIM D, YOO J M, HWANG H, et al. Graphene quantum dots prevent α-synucleinopathy in Parkinson's disease [J].Nat. Nanotechnol., 2018, 13(9): 812-818.
HOFMANN M S, GLÜCKERT J T, NOÉ J, et al. Bright, long-lived and coherent excitons in carbon nanotube quantum dots [J].Nat. Nanotechnol., 2013, 8(7): 502-505.
GONG N Q, MA X W, YE X X, et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment [J].Nat. Nanotechnol., 2019, 14(4): 379-387.
BHATTACHARYYA S, EHRAT F, URBAN P, et al. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots [J].Nat. Commun., 2017, 8(1): 1401-1-9.
YUAN F L, YUAN T, SUI L, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs [J].Nat. Commun., 2018, 9(1): 2249-1-11.
KRYSMANN M J, KELARAKIS A, DALLAS P, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission [J].J. Am. Chem. Soc., 2012, 134(2): 747-750.
曲松楠, 孙铭鸿, 田震, 等. 氮掺杂碳点的合成与应用[J].发光学报, 2019, 40(5): 557-580.
QU S N, SUN M H, TIAN Z, et al. Synthesis and application of nitrogen-doped carbon dots [J].Chin. J. Lumin., 2019, 40(5): 557-580. (in Chinese)
LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications [J].Chem. Soc. Rev., 2015, 44(1): 362-381.
JIANG L, DING H Z, LU S Y, et al. Photoactivated fluorescence enhancement in F, N-doped carbon dots with piezochromic behavior [J].Angew. Chem. Int. Ed., 2020, 59(25): 9986-9991.
RU Y, SUI L, SONG H Q, et al. Rational design of multicolor-emitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence [J].Angew. Chem. Int. Ed., 2021, 60(25): 14091-14099.
MENG T, WANG Z F, YUAN T, et al. Gram-scale synthesis of highly efficient rare-earth-element-free red/green/blue solid-state bandgap fluorescent carbon quantum rings for white light-emitting diodes [J].Angew. Chem. Int. Ed., 2021, doi: 10.1002/ange.202103361http://doi.org/10.1002/ange.202103361.
SONG H Q, LIU X J, WANG B Y, et al. High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes[J].Sci. Bull., 2019, 64(23): 1788-1794.
WANG B Y, LI J, TANG Z Y, et al. Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes [J].Sci. Bull., 2019, 64(17): 1285-1292.
LU S Y, SUI L, LIU J J, et al. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence [J].Adv. Mater., 2017, 29(15): 1603443-1-6.
LU S Y, SUI L, WU M, et al. Graphitic nitrogen and high-crystalline triggered strong photoluminescence and room-temperature ferromagnetism in carbonized polymer dots [J].Adv. Sci., 2019, 6(2): 1801192-1-8.
SHEN C L, LOU Q, LV C F, et al. Trigonal nitrogen activates high-brightness chemiluminescent carbon nanodots [J].ACS Mater. Lett., 2021, 3(6): 826-837.
王欢, 徐晶, 黄昱清, 等. 红光碳点: 发光机理、调控及应用探究[J].发光学报, 2020, 41(12): 1579-1597.
WANG H, XU J, HUANG Y Q, et al. Red emissive carbon dots: photoluminescence mechanism, modulation and application research [J].Chin. J. Lumin., 2020, 41(12): 1579-1597. (in Chinese)
LIANG Y C, LIU K K, WU X Y, et al. Lifetime-engineered carbon nanodots for time division duplexing [J].Adv. Sci., 2021, 8(6): 2003433-1-9.
LIANG Y C, GOU S S, LIU K K, et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution [J].Nano Today, 2020, 34: 100900-1-11.
YUAN F L, WANG Z B, LI X H, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes [J].Adv. Mater., 2017, 29(3): 1604436-1-6.
ARCUDI F, ĐORĐEVIĆ L, REBECCANI S, et al. Lighting up the electrochemiluminescence of carbon dots through pre- and post-synthetic design [J].Adv. Sci., 2021, doi: 10.1002/advs.202100125http://doi.org/10.1002/advs.202100125.
DONG S Q, YUAN Z Q, ZHANG L J, et al. Rapid screening of oxygen states in carbon quantum dots by chemiluminescence probe [J].Anal. Chem., 2017, 89(22): 12520-12526.
SHI J X, LU C, YAN D, et al. High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system [J].Biosens. Bioelectron., 2013, 45: 58-64.
LIN Z, XUE W, CHEN H, et al. Classical oxidant induced chemiluminescence of fluorescent carbon dots [J].Chem. Commun., 2012, 48(7): 1051-1053.
ZHAO L X, DI F, WANG D B, et al. Chemiluminescence of carbon dots under strong alkaline solutions: a novel insight into carbon dot optical properties [J].Nanoscale, 2013, 5(7): 2655-2658.
ZHU Q J, LIU G Y, YAN M X, et al. Cu2+ enhanced chemiluminescence of carbon dots-H2O2 system in alkaline solution [J].Talanta, 2020, 208: 120380-1-5.
XU X Y, Ray R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].J. Am. Chem. Soc., 2004, 126(40): 12736-12737.
ZHAO S, LAVIE J, RONDIN L, et al. Single photon emission from graphene quantum dots at room temperature [J].Nat. Commun., 2018, 9(1): 3470-1-5.
SONG S Y, LIU K K, WEI J Y, et al. Deep-ultraviolet emissive carbon nanodots [J].Nano Lett., 2019, 19(8): 5553-5561.
MU Y, WANG N, SUN Z C, et al. Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence [J].Chem. Sci., 2016, 7(6): 3564-3568.
ZHU A W, QU Q, SHAO X L, et al. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions [J].Angew. Chem. Int. Ed., 2012, 51(29): 7185-7189.
SEKIYA R, UEMURA Y, MURAKAMI H, et al. White-light-emitting edge-functionalized graphene quantum dots [J].Angew. Chem. Int. Ed., 2014, 53(22): 5619-5623.
D'ANDRADE B W, FORREST S R. White organic light-emitting devices for solid-state lighting [J].Adv. Mater., 2004, 16(18): 1585-1595.
BOUZAS-RAMOS D, CANGA J C, MAYO J C, et al. Carbon quantum dots codoped with nitrogen and lanthanides for multimodal imaging [J].Adv. Funct. Mater., 2019, 29(38): 1903884-1-11.
QU S N, ZHOU D, LI D, et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering [J].Adv. Mater., 2016, 28(18): 3516-3521.
DING H, YU S B, WEI J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism [J].ACS Nano, 2016, 10(1): 484-491.
XIA C L, ZHU S J, FENG T L, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots [J].Adv. Sci., 2019, 6(23): 1901316.
AI L, YANG Y S, WANG B Y, et al. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives [J].Sci. Bull., 2021, 66(8): 839-856.
SHEN C L, LOU Q, LIU K K, et al. Chemiluminescent carbon dots: synthesis, properties, and applications [J].Nano Today, 2020, 35: 100954-1-23.
VALLAN L, URRIOLABEITIA E P, RUIPÉREZ F, et al. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots [J].J. Am. Chem. Soc., 2018, 140(40): 12862-12869.
SK M A, ANANTHANARAYANAN A, HUANG L, et al. Revealing the tunable photoluminescence properties of graphene quantum dots [J].J. Mater. Chem. C, 2014, 2(34): 6954-6960.
LIU K K, SONG S Y, SUI L Z, et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence [J].Adv. Sci., 2019, 6(17): 1900766-1-10.
QU S N, WANG X Y, LU Q P, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots [J].Angew. Chem. Int. Ed., 2012, 51(49): 12215-12218.
ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging [J].Angew. Chem. Int. Ed., 2013, 52(14): 3953-3957.
JIN S H, KIM D H, JUN G H, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups [J].ACS Nano, 2013, 7(2): 1239-1245.
MIAO X, QU D, YANG D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization [J].Adv. Mater., 2018, 30(1): 1704740-1-8.
YANG K, WANG C L, WEI X H, et al. Self-illuminating photodynamic therapy with enhanced therapeutic effect by optimization of the chemiluminescence resonance energy transfer step to the photosensitizer [J].Bioconjug. Chem., 2020, 31(3): 595-604.
VACHER M, GALVÁN I F, DING B W, et al. Chemi-and bioluminescence of cyclic peroxides [J].Chem. Rev., 2018, 118(15): 6927-6974.
YANG L, ZHANG R L, LIU B H, et al. π-conjugated carbon radicals at graphene oxide to initiate ultrastrong chemiluminescence [J].Angew. Chem. Int. Ed., 2014, 53(38): 10109-10113.
HUANG X Y, LI L, QIAN H F, et al. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors(CRET) [J].Angew. Chem. Int. Ed., 2006, 45(31): 5140-5143.
WANG D M, GAO M X, GAO P F, et al. Carbon nanodots-catalyzed chemiluminescence of luminol: a singlet oxygen-induced mechanism [J].J. Phys. Chem. C, 2013, 117(37): 19219-19225.
GUO Y, LI B X. Carbon dots-initiated luminol chemiluminescence in the absence of added oxidant [J].Carbon, 2015, 82: 459-469.
CHEN J Q, SHU J, CHEN J, et al. Highly luminescent S, N co-doped carbon quantum dots-sensitized chemiluminescence on luminol-H2O2 system for the determination of ranitidine [J].Luminescence, 2017, 32(3): 277-284.
WANG J B, HAN S Q, FAN Z Y, et al. Carbon dots-catalyzed chemiluminescence for the determination of trace isonaphthol [J].J. Chin. Chem. Soc., 2017, 64(5): 486-492.
ZHANG J M, CHEN X X, LI Y, et al. A nitrogen doped carbon quantum dot-enhanced chemiluminescence method for the determination of Mn2+ [J].Anal. Meth., 2018, 10(5): 541-547.
VÁZQUEZ-GONZÁLEZ M, LIAO W C, CAZELLES R, et al. Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous catalysts [J].ACS Nano, 2017, 11(3): 3247-3253.
DUAN Y, HUANG Y J, CHEN S Y, et al. Cu-doped carbon dots as catalysts for the chemiluminescence detection of glucose [J].ACS Omega, 2019, 4(6): 9911-9917.
ZHEN X, ZHANG C W, XIE C, et al. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species [J].ACS Nano, 2016, 10(6): 6400-6409.
GU X G, TANG B Z. No UV irradiation needed! Chemiexcited AIE dots for cancer theranostics [J].Chem, 2017, 3(6): 922-924.
SHEN C L, LOU Q, LV C F, et al. Bright and multicolor chemiluminescent carbon nanodots for advanced information encryption [J].Adv. Sci., 2019, 6(11): 1802331-1-9.
SHEN C L, ZHENG G S, WU M Y, et al. Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose [J].Nanophotonics, 2020, 9(11): 3597-3604.
SHEN C L, LOU Q, ZANG J H, et al. Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging [J].Adv. Sci., 2020, 7(8): 1903525-1-8.
0
Views
1243
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution