浏览全部资源
扫码关注微信
1.中国科学院理化技术研究所 光化学转换与功能材料重点实验室,北京 100190
2.中国科学院大学 未来技术学院,北京 100049
Published:01 August 2021,
Received:30 April 2021,
Revised:20 May 2021,
扫 描 看 全 文
Fu-chun NAN, Xiao-kuang XUE, Jie-chao GE, et al. Recent Advances of Red/Near Infrared Light Responsive Carbon Dots for Tumor Therapy. [J]. Chinese Journal of Luminescence 42(8):1155-1171(2021)
Fu-chun NAN, Xiao-kuang XUE, Jie-chao GE, et al. Recent Advances of Red/Near Infrared Light Responsive Carbon Dots for Tumor Therapy. [J]. Chinese Journal of Luminescence 42(8):1155-1171(2021) DOI: 10.37188/CJL.20210163.
碳点作为一种新型碳纳米材料,具有优异的光学特性、良好的生物相容性以及催化活性,在生物医学、能源、环境等领域展现出巨大的应用潜力。红光/近红外光响应碳点具有组织穿透深度大、生物体自发光干扰较小、对组织损伤小等优点,在生物医学研究领域倍受关注。本文首先介绍了影响碳点吸收/发光的因素,随后评述了近几年红光/近红外光响应碳点在肿瘤治疗中的新进展,主要包括光动力治疗、光热治疗、光动力/光热协同治疗等。同时,针对肿瘤微环境的特点,介绍了微环境响应型碳点及其在肿瘤治疗中的应用研究进展。最后,对碳点在肿瘤治疗领域存在的挑战进行了展望。
As a new carbon material
carbon dots have exhibited great potential in biomedical
energetic
and environmental applications due to their excellent optical characters
good biocompatibility and catalytic activities. Carbon dots(CDs) with red/near infrared(NIR) light responsive properties possess deep tissue penetration
minimal autofluorescence disturbance and low tissue damage
which makes them to be drawn great attention in biomedical application. In this review
we firstly introduced the factors affecting the absorption/emission properties of CDs
then focused on the recent advances of red/NIR light responsive CDs for the tumor therapy
mainly including photodynamic therapy(PDT)
photothermal therapy(PTT) and PDT/PTT synergistic therapy. Meanwhile
based on the feature of tumor microenvironment
we also reviewed the tumor microenvironment(TME) responsive carbon dots and their applications in tumor therapy. Finally
we discussed the present challenges and future prospects of CDs for cancer treatment.
碳点光动力治疗光热治疗肿瘤微环境
carbon dotsphotodynamic therapyphotothermal therapytumor microenvironment
XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].J. Am. Chem. Soc., 2004, 126(40): 12736-12737.
SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J].J. Am. Chem. Soc., 2006, 128(24): 7756-7757.
ZHU S J, SONG Y B, SHAO J R, et al. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units [J].Angew. Chem. Int. Ed., 2015, 54(49): 14626-14637.
ZHU S J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective [J].Nano Res., 2015, 8(2): 355-381.
杨磊, 杨志, 连锋. 碳量子点作为生物相容性发光材料在再生医学方面的应用[J].材料导报, 2019, 33(S2): 1-9.
YANG L, YANG Z, LIAN F. Application of carbon quantum dots as biocompatible luminous materials in regenerative medicine [J].Mater. Rep., 2019, 33(S2): 1-9. (in Chinese)
邹漫, 陈叶青. 碳点在生物诊疗中的应用[J].材料工程, 2020, 48(9): 59-68.
ZOU M, CHEN Y Q. Application of carbon dots in biological diagnosis and treatment [J].J. Mater. Eng., 2020, 48(9): 59-68. (in Chinese)
BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights [J].Angew. Chem. Int. Ed., 2010, 49(38): 6726-6744.
DU J J, XU N, FAN J L, et al. Carbon dots for in vivo bioimaging and theranostics [J].Small, 2019, 15(32): 1805087-1-16.
ZHOU Z J, SONG J B, NIE L M, et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy [J].Chem. Soc. Rev., 2016, 45(23): 6597-6626.
MINTZ K J, ZHOU Y Q, LEBLANC R M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure [J].Nanoscale, 2019, 11(11): 4634-4652.
SU Y, LIU S, GUAN Y Y, et al. Renal clearable Hafnium-doped carbon dots for CT/Fluorescence imaging of orthotopic liver cancer [J].Biomaterials, 2020, 255: 120110-1-9.
JIANG B P, ZHOU B, LIN Z X, et al. Recent advances in carbon nanomaterials for cancer phototherapy [J].Chem. Eur. J., 2019, 25(16): 3993-4004.
KARGES J, BASU U, BLACQUE O, et al. Polymeric encapsulation of novel homoleptic bis(dipyrrinato) zinc(Ⅱ) complexes with long lifetimes for applications as photodynamic therapy photosensitisers [J].Angew. Chem. Int. Ed., 2019, 58(40): 14334-14340.
LI X S, LEE S, YOON J. Supramolecular photosensitizers rejuvenate photodynamic therapy [J].Chem. Soc. Rev., 2018, 47(4): 1174-1188.
CHEN J Q, NING C Y, ZHOU Z N, et al. Nanomaterials as photothermal therapeutic agents [J].Prog. Mater. Sci., 2019, 99: 1-26.
杨焜, 王春来, 丁晟, 等. 荧光碳量子点: 合成、特性及在肿瘤治疗中的应用[J].材料导报, 2019, 33(9): 1475-1482.
YANG K, WANG C L, DING S, et al. A state-of-the-art review on fluorescent carbon quantum dots: fabrication, characterization and potential in cancer therapy [J].Mater. Rep., 2019, 33(9): 1475-1482. (in Chinese)
ZHU H J, CHENG P H, CHEN P, et al. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics [J].Biomater. Sci., 2018, 6(4): 746-765.
YUAN F L, LI S H, FAN Z T, et al. Shining carbon dots: synthesis and biomedical and optoelectronic applications [J].Nano Today, 2016, 11(5): 565-586.
BAO X, YUAN Y, CHEN J Q, et al. In vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration [J].Light Sci. Appl., 2018, 7: 91-1-11.
BAO Y W, HUA X W, LI Y H, et al. Hyperthemia-promoted cytosolic and nuclear delivery of copper/carbon quantum dot-crosslinked nanosheets: multimodal imaging-guided photothermal cancer therapy [J].ACS Appl. Mater. Interfaces, 2018, 10(2): 1544-1555.
TIAN B S, LIU S K, FENG L L, et al. Renal-clearable nickel-doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging-guided cancer therapy in the second near-infrared biowindow [J].Adv. Funct. Mater., 2021, 31(26): 2100549-1-12.
YANG C Y, LI Y, YANG Y X, et al. Multidimensional theranostics for tumor fluorescence imaging, photoacoustic imaging and photothermal treatment based on manganese doped carbon dots [J].J. Biomed. Nanotechnol., 2018, 14(9): 1590-1600.
LI D, HAN D, QU S N, et al. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion [J].Light Sci. Appl., 2016, 5(7): e16120-1-8.
DING H, ZHOU X X, WEI J S, et al. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications [J].Carbon, 2020, 167: 322-344.
SK M A, ANANTHANARAYANAN A, HUANG L, et al. Revealing the tunable photoluminescence properties of graphene quantum dots [J].J. Mater. Chem. C, 2014, 2(34): 6954-6960.
TIAN Z, ZHANG X T, LI D, et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes [J].Adv. Opt. Mater., 2017, 5(19): 1700416-1-9.
BAO L, ZHANG Z L, TIAN Z Q, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism [J].Adv. Mater., 2011, 23(48): 5801-5806.
LI D, JING P T, SUN L H, et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots[J].Adv. Mater., 2018, 30(13): 1705913-1-8.
ZHENG M, QIAO L H, SU Y, et al. A postmodification strategy to modulate the photoluminescence of carbon dots from blue to green and red: synthesis and applications [J].J. Mater. Chem. B, 2019, 7(24): 3840-3845.
LIU Y H, DUAN W X, SONG W, et al. Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells [J].ACS Appl. Mater. Interfaces, 2017, 9(14): 12663-12672.
GUO L, GE J C, LIU W M, et al. Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism [J].Nanoscale, 2016, 8(7): 729-734.
HOLÁ K, SUDOLSKÁ M, KALYTCHUK S, et al. Graphitic nitrogen triggers red fluorescence in carbon dots [J].ACS Nano, 2017, 11(12): 12402-12410.
PERMATASARI F A, FUKAZAWA H, OGI T, et al. Design of pyrrolic-n-rich carbon dots with absorption in the first near-infrared window for photothermal therapy [J].ACS Appl. Nano Mater., 2018, 1(5): 2368-2375.
JIANG L, DING H Z, XU M S, et al. UV-vis-NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo [J].Small, 2020, 16(19): 2000680-1-9.
GE J C, LAN M H, ZHOU B J, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation [J].Nat. Commun., 2014, 5: 4596-1-8.
JIA Q Y, GE J C, LIU W M, et al. Self-assembled carbon dot nanosphere: a robust, near-infrared light-responsive, and vein injectable photosensitizer [J].Adv. Healthc. Mater., 2017, 6(12): 1601419-1-9.
ZHANG L Z, LIN Z X, YU Y X, et al. Multifunctional hyaluronic acid-derived carbon dots for self-targeted imaging-guided photodynamic therapy [J].J. Mater. Chem. B, 2018, 6(41): 6534-6543.
HE H Z, ZHENG X H, LIU S, et al. Diketopyrrolopyrrole-based carbon dots for photodynamic therapy [J].Nanoscale, 2018, 10(23): 10991-10998.
ZHANG Y, YANG C, YANG D L, et al. Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy [J].Phys. Chem. Chem. Phys., 2018, 20(25): 17262-17267.
JIA Q Y, GE J C, LIU W M, et al. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy [J].Adv. Mater., 2018, 30(13): 1706090-1-10.
CHEN H J, QIU Y, DING D S, et al. Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic therapy [J].Adv. Mater., 2018, 30(36):1802748-1-9.
WU F S, CHEN J W, LI Z C, et al. Red/near-infrared emissive metalloporphyrin-based nanodots for magnetic resonance imaging-guided photodynamic therapy in vivo [J].Part. Part. Syst. Charact., 2018, 35(9): 1800208-1-7.
KAUR N, SHARMA V, TIWARI P, et al. “Vigna radiata” based green C-dots: photo-triggered theranostics, fluorescent sensor for extracellular and intracellular iron (Ⅲ) and multicolor live cell imaging probe [J].Sen. Actuators B:Chem., 2019, 291: 275-286.
WANG J M, XU M S, WANG D, et al. Copper-doped carbon dots for optical bioimaging and photodynamic therapy [J].Inorg. Chem., 2019, 58(19): 13394-13402.
WEN Y M, JIA Q Y, NAN F C, et al. Pheophytin derived near-infrared-light responsive carbon dot assembly as a new phototheranotic agent for bioimaging and photodynamic therapy [J].Chem. Asian J., 2019, 14(12): 2162-2168.
ZHAO J, LI F T, ZHANG S, et al. Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors [J].New J. Chem., 2019, 43(16): 6332-6342.
ZHENG X T, LAI Y C, TAN Y N. Nucleotide-derived theranostic nanodots with intrinsic fluorescence and singlet oxygen generation for bioimaging and photodynamic therapy [J].Nanoscale Adv., 2019, 1(6): 2250-2257.
NASRIN A, HASSAN M, GOMES V G. Two-photon active nucleus-targeting carbon dots: enhanced ROS generation and photodynamic therapy for oral cancer [J].Nanoscale, 2020, 12(40): 20598-20603.
SUN W J, LUO L, FENG Y S, et al. Gadolinium-rose bengal coordination polymer nanodots for MR-/fluorescence-image-guided radiation and photodynamic therapy [J].Adv. Mater., 2020, 32(23): 2000377-1-8.
LI Y, ZHENG X H, ZHANG X Y, et al. Porphyrin-based carbon dots for photodynamic therapy of hepatoma [J].Adv. Healthc. Mater., 2017, 6(1): 1600924-1-6.
SU Y, LU S Y, GAO P L, et al. BODIPY@carbon dot nanocomposites for enhanced photodynamic activity [J].Mater. Chem. Front., 2019, 3(9): 1747-1753.
CHEN S, SUN T T, ZHENG M, et al. Carbon dots based nanoscale covalent organic frameworks for photodynamic therapy [J].Adv. Funct. Mater., 2020, 30(43): 2004680-1-8.
FILONOV G S, KRUMHOLZ A, XIA J, et al. Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe [J].Angew. Chem. Int. Ed., 2012, 51(6): 1448-1451.
GE J C, JIA Q Y, LIU W M, et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice [J].Adv. Mater., 2015, 27(28): 4169-4177.
LAN M H, ZHAO S J, ZHANG Z Y, et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy [J].Nano Res., 2017, 10(9): 3113-3123.
SUN S, ZHANG L, JIANG K, et al. Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents [J].Chem. Mater., 2016, 28(23): 8659-8668.
ZHENG M, LI Y, LIU S, et al. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy [J].ACS Appl. Mater. Interfaces, 2016, 8(36): 23533-23541.
XU G Y, BAO X, CHEN J Q, et al. In vivo tumor photoacoustic imaging and photothermal therapy based on supra-(carbon nanodots) [J].Adv. Healthc. Mater., 2019, 8(2): 1800995-1-7.
LIU Z, XU Q, LI Y L, et al. Fluorescent C-dot nanocomposites as efficient photothermal agents and multi-modal imaging tracers [J].Mater. Chem. Front., 2017, 1(3): 538-541.
BAI Y T, ZHANG B, CHEN L, et al. Facile one-pot synthesis of polydopamine carbon dots for photothermal therapy [J].Nanoscale Res. Lett., 2018, 13: 287-1-9.
QIAN M, DU Y L, WANG S S, et al. Highly crystalline multicolor carbon nanodots for dual-modal imaging-guided photothermal therapy of glioma [J].ACS Appl. Mater. Interfaces, 2018, 10(4): 4031-4040.
GENG B J, YANG D W, PAN D Y, et al. NIR-responsive carbon dots for efficient photothermal cancer therapy at low power densities [J].Carbon, 2018, 134: 153-162.
LI Y B, BAI G X, ZENG S J, et al. Theranostic carbon dots with innovative NIR-Ⅱ emission for in vivo renal-excreted optical imaging and photothermal therapy [J].ACS Appl. Mater. Interfaces, 2019, 11(5): 4737-4744.
LIU H J, LI C W, QIAN Y, et al. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window [J].Biomaterials, 2020, 232: 119700-1-11.
EL-SAWY H S, AL-ABD A M, AHMED T A, et al. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives [J].ACS Nano, 2018, 12(11): 10636-10664.
WANG D, XUE B, OHULCHANSKYY T Y, et al. Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy [J].Biomaterials, 2020, 251: 120088-1-14.
VANKAYALA R, HWANG K C. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment [J].Adv. Mater., 2018, 30(23): 1706320-1-27.
HUANG Y, QIU F, SHEN L Y, et al. Combining two-photon-activated fluorescence resonance energy transfer and near-infrared photothermal effect of unimolecular micelles for enhanced photodynamic therapy [J].ACS Nano, 2016, 10(11): 10489-10499.
FAN W P, YUNG B, HUANG P, et al. Nanotechnology for multimodal synergistic cancer therapy [J].Chem. Rev., 2017, 117(22): 13566-13638.
JIA Q Y, GE J C, LIU W M, et al. Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy [J].Nanoscale, 2016, 8(26): 13067-13077.
SUN S, CHEN J Q, JIANG K, et al. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power [J].ACS Appl. Mater. Interfaces, 2019, 11(6): 5791-5803.
GE J C, JIA Q Y, LIU W M, et al. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo [J].Adv. Healthc. Mater., 2016, 5(6): 665-675.
JIA Q Y, ZHENG X L, GE J C, et al. Synthesis of carbon dots from Hypocrella Bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer [J].J. Colloid Interface Sci., 2018, 526: 302-311.
GUO X L, DING Z Y, DENG S M, et al. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies [J].Carbon, 2018, 134: 519-530.
ZHAO S J, WU S L, JIA Q Y, et al. Lysosome-targetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging [J].Chem. Eng. J., 2020, 388: 124212-1-9.
ANDERSON N M, SIMON M C. The tumor microenvironment [J].Curr. Biol., 2020, 30(16): R921-R925.
HORSMAN M R, VAUPEL P. Pathophysiological basis for the formation of the tumor microenvironment [J].Front. Oncol., 2016, 6: 66-1-12.
DAI Y L, XU C, SUN X L, et al. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment [J].Chem. Soc. Rev., 2017, 46(12): 3830-3852.
WANG L Y, HUO M F, CHEN Y, et al. Tumor microenvironment-enabled nanotherapy [J].Adv. Healthc. Mater., 2018, 7(8): 1701156-1-23.
HE J Y, LI C C, DING L, et al. Tumor targeting strategies of smart fluorescent nanoparticles and their applications in cancer diagnosis and treatment [J].Adv. Mater., 2019, 31(40): 1902409-1-31.
LI J P, YANG S W, DENG Y, et al. Emancipating target-functionalized carbon dots from autophagy vesicles for a novel visualized tumor therapy [J].Adv. Funct. Mater., 2018, 28(30): 1800881-1-9.
ZHAO J J, ZOU M B, HUANG M J, et al. A multifunctional nanoprobe for targeting tumors and mitochondria with singlet oxygen generation and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging [J].Chem. Sci., 2020, 11(14): 3636-3643.
HEIDEN M G V, CANTLEY L C, THOMPSON C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation [J].Science, 2009, 324(5930): 1029-1033.
FENG T, AI X Z, ONG H, et al. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery [J].ACS Appl. Mater. Interfaces, 2016, 8(29): 18732-18740.
SEO J, LEE J, LEE C B, et al. Nonpolymeric pH-sensitive carbon dots for treatment of tumor [J].Bioconjug. Chem., 2019, 30(3): 621-632.
ZHANG X, SHEN Y T, XU S P, et al. Intracellular pH-propelled assembly of smart carbon nanodots and selective photothermal therapy for cancer cells [J].Colloids Surf. B Biointerfaces, 2020, 188: 110724-1-8.
SHEN Y T, ZHANG X, LIANG L J, et al. Mitochondria-targeting supra-carbon dots: enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions [J].Carbon, 2020, 156: 558-567.
CHEN S Q, JIA Q Y, ZHENG X L, et al. PEGylated carbon dot/MnO2 nanohybrid: a new pH/H2O2-driven, turn-on cancer nanotheranostics [J].Sci. China Mater., 2018, 61(10): 1325-1338.
ZHENG D W, LI B, LI C X, et al. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting [J].ACS Nano, 2016, 10(9): 8715-8722.
ZHANG C, BU W B, NI D L, et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction [J].Angew. Chem. Int. Ed., 2016, 55(6): 2101-2106.
SUN S, CHEN Q, TANG Z D, et al. Tumor microenvironment stimuli-responsive fluorescence imaging and synergistic cancer therapy by carbon-dot-Cu2+ nanoassemblies [J].Angew. Chem. Int. Ed., 2020, 132(47): 21227-21234.
GONG N Q, MA X W, YE X X, et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment [J].Nat. Nanotechnol., 2019, 14(4): 379-387.
0
Views
587
下载量
10
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution