浏览全部资源
扫码关注微信
长春工业大学 化学与生命科学学院,材料科学高等研究院,吉林 长春 130012
Published:01 August 2021,
Received:30 April 2021,
Revised:25 May 2021,
移动端阅览
MIN ZHENG, KUN-MEI LIU, YA SU. Carbon Dots for Biomedical Applications. [J]. Chinese journal of luminescence, 2021, 42(8): 1233-1244.
MIN ZHENG, KUN-MEI LIU, YA SU. Carbon Dots for Biomedical Applications. [J]. Chinese journal of luminescence, 2021, 42(8): 1233-1244. DOI: 10.37188/CJL.20210162.
碳点作为新兴的碳纳米材料之一,由于具有低细胞毒性、强亲水性、良好的生物相容性、优异的光稳定性、可调的发光和易于修饰等独特的理化特性,在生物医学领域具有广泛的应用前景。本综述主要阐述了碳点在生物成像、药物/染料/蛋白/基因的递送和癌症诊断治疗等方面的应用,并探讨了其在生物医学领域应用的当前挑战和未来前景。
As one of the emerging carbon nanomaterials
carbon dots(CDs) have a wide application in biomedical field because of their unique physical and chemical properties such as low cytotoxicity
strong hydrophilicity
good biocompatibility
excellent photostability
adjustable luminescence and easy modification. In this review
we mainly discuss the applications of CDs in biological imaging
drug/dye/protein/gene delivery and cancer diagnosis and treatment. Furthermore
we discuss the current challenges and future prospects of CDs in biomedical applications.
碳点生物成像药物递送癌症诊断治疗
carbon dotsbioimagingdrug deliverycancer theranostic
ZHENG M, QIAO L H, SU Y, et al. A postmodification strategy to modulate the photoluminescence of carbon dots from blue to green and red: synthesis and applications [J].J. Mater. Chem. B, 2019, 7(24): 3840-3845.
SU Y, XIE Z G, ZHENG M. Carbon dots with concentration-modulated fluorescence: aggregation-induced multicolor emission [J].J. Colloid Interface Sci., 2020, 573: 241-249.
FENG Q, XIE Z G, ZHENG M. Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots [J].Chem. Eng. J., 2021, 420: 127647-1-7.
SU Y, LIU S, GUAN Y Y, et al. Renal clearable hafnium-doped carbon dots for CT/Fluorescence imaging of orthotopic liver cancer [J].Biomaterials, 2020, 255: 120110-1-9.
QIAO L H, SUN T T, ZHENG X H, et al. Exploring the optimal ratio of D-glucose/L-aspartic acid for targeting carbon dots toward brain tumor cells [J].Mater. Sci. Eng. C, 2018, 85: 1-6.
ZHANG J X, ZHENG M, ZHANG F L, et al. Supramolecular hybrids of AIEgen with carbon dots for noninvasive long-term bioimaging [J].Chem. Mater., 2016, 28(23): 8825-8833.
ZHENG M, RUAN S B, LIU S, et al. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells [J].ACS Nano, 2015, 9(11): 11455-11461.
ZHENG M, LIU S, LI J, et al. Preparation of highly luminescent and color tunable carbon nanodots under visible light excitation for in vitro and in vivo bio-imaging [J].J. Mater. Res., 2015, 30(22): 3386-3393.
QU D, ZHENG M, LI J, et al. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications [J].Light Sci. Appl., 2015, 4: e364-1-8.
QU D, ZHENG M C, LI J, et al. Three colors emission from S, N co-doped graphene quantum dots for visible light H2 production and bioimaging [J].Adv. Opt. Mater., 2015, 3(3): 360-367.
LU S, LI Z X, FU X Y, et al. Carbon dots-based fluorescence and UV-vis absorption dual-modal sensors for Ag+ and l-cysteine detection [J].Dyes Pigm., 2021, 187: 109126-1-7.
GAO P L, WANG J W, ZHENG M, et al. Lysosome targeting carbon dots-based fluorescent probe for monitoring pH changes in vitro and in vivo [J].Chem. Eng. J., 2020, 381: 122665-1-9.
GAO P L, XIE Z G, ZHENG M. Chiral carbon dots-based nanosensors for Sn (Ⅱ) detection and lysine enantiomers recognition [J].Sens. Actuators B:Chem., 2020, 319: 128265-1-8.
WANG J W, YANG Y S, SUN G Y, et al. A convenient and universal platform for sensing environmental nitro-aromatic explosives based on amphiphilic carbon dots [J].Environ. Res., 2019, 177: 108621-1-8.
ZHENG M, XIE Z G. A carbon dots-based nanoprobe for intracellular Fe3+ detection [J].Mater. Today Chem., 2019, 13: 121-127.
QIAO L H, WANG J W, ZHENG M, et al. BODIPY-based carbon dots as fluorescent nanoprobes for sensing and imaging of extreme acidity [J].Anal. Methods, 2018, 10(16): 1863-1869.
ZHENG M, LI Y, ZHANG Y J, et al. Solvatochromic fluorescent carbon dots as optic noses for sensing volatile organic compounds [J].RSC Adv., 2016, 6(86): 83501-83504.
ZHENG M, XIE Z G, QU D, et al. On-off-on fluorescent carbon dots nanosensor for recognition of chromium (Ⅵ) and ascorbic acid based on the inner filter effect [J].ACS Appl. Mater. Interfaces, 2013, 5(24): 13242-13247.
LU S, XIE Z G, ZHENG M. Phenylboronic acid modified carbon dots for improved protein delivery [J].Chem. Eng. Sci., 2021, 237: 116586-1-9.
GAO P L, LIU S, SU Y, et al. Fluorine-doped carbon dots with intrinsic nucleus-targeting ability for drug and dye delivery [J].Bioconjugate Chem., 2020, 31(3): 646-655.
LI Y W, LIU W S, SUN C B, et al. Hybrids of carbon dots with subunit B of ricin toxin for enhanced immunomodulatory activity [J].J. Colloid Interface Sci., 2018, 523: 226-233.
SUN T T, ZHENG M, XIE Z G, et al. Supramolecular hybrids of carbon dots with doxorubicin: synthesis, stability and cellular trafficking [J].Mater. Chem. Front., 2017, 1(2): 354-360.
ZHANG J X, ZHENG M, XIE Z G. Co-assembled hybrids of proteins and carbon dots for intracellular protein delivery [J].J. Mater. Chem. B, 2016, 4(34): 5659-5663.
CHEN S, SUN T T, ZHENG M, et al. Carbon dots based nanoscale covalent organic frameworks for photodynamic therapy [J].Adv. Funct. Mater., 2020, 30(43): 2004680-1-9.
SU Y, LU S Y, GAO P L, et al. BODIPY@carbon dot nanocomposites for enhanced photodynamic activity [J].Mater. Chem. Front., 2019, 3(9): 1747-1753.
HE H Z, ZHENG X H, LIU S, et al. Diketopyrrolopyrrole-based carbon dots for photodynamic therapy [J].Nanoscale, 2018, 10(23): 10991-10998.
LI Y, ZHENG X H, ZHENG X Y, et al. Porphyrin-based carbon dots for photodynamic therapy of hepatoma [J].Adv. Healthc. Mater., 2017, 6(1): 1600924-1-6.
ZHENG M, LI Y, LIU S, et al. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy [J].ACS Appl. Mater. Interfaces, 2016, 8(36): 23533-23541.
LI Y, ZHANG X Y, ZHENG M, et al. Dopamine carbon nanodots as effective photothermal agents for cancer therapy [J].RSC Adv., 2016, 6(59): 54087-54091.
ZHENG M, LIU S, LI J, et al. Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine [J].Adv. Mater., 2014, 26(21): 3554-3560.
LIU H F, YANG J, LI Z H, et al. Hydrogen-bond-induced emission of carbon dots for wash-free nucleus imaging [J].Anal. Chem., 2019, 91(14): 9259-9265.
HUA X W, BAO Y W, ZENG J, et al. Nucleolus-targeted red emissive carbon dots with polarity-sensitive and excitation-independent fluorescence emission: high-resolution cell imaging and in vivo tracking [J].ACS Appl. Mater. Interfaces, 2019, 11(36): 32647-32658.
LIU H F, SUN Y Q, LI Z H, et al. Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells [J].Nanoscale, 2019, 11(17): 8458-8463.
BAO Y W, HUA X W, LI Y H, et al. Endoplasmic reticulum-targeted phototherapy using one-step synthesized trace metal-doped carbon-dominated nanoparticles: laser-triggered nucleolar delivery and increased tumor accumulation [J].Acta Biomater., 2019, 88: 462-476.
ZHOU D L, HUANG H, WANG Y G, et al. A yellow-emissive carbon nanodot-based ratiometric fluorescent nanosensor for visualization of exogenous and endogenous hydroxyl radicals in the mitochondria of live cells [J].J. Mater. Chem. B, 2019, 7(23): 3737-3744.
LI C H, LI R S, LI C M, et al. Precise ricin A-chain delivery by golgi-targeting carbon dots [J].Chem. Commun., 2019, 55(45): 6437-6440.
DUAN Q Q, CHE M X, HU S L, et al. Rapid cancer diagnosis by highly fluorescent carbon nanodots-based imaging [J].Anal. Bioanal. Chem., 2019, 411(5): 967-972.
ZHANG J L, ZHAO X W, XIAN M, et al. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells [J].Talanta, 2018, 183: 39-47.
BOUZAS-RAMOS D, CANGA J C, MAYO J C, et al. Carbon quantum dots codoped with nitrogen and lanthanides for multimodal imaging [J].Adv. Funct. Mater., 2019, 29(38): 1903884-1-11.
FENG T, AI X Z, AN G H, et al. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency [J].ACS Nano, 2016, 10(4): 4410-4420.
WANG H, MUKHERJEE S, YI J H, et al. Biocompatible chitosan-carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal-chemo therapy [J].ACS Appl. Mater. Interfaces, 2017, 9(22): 18639-18649.
LIU C J, ZHANG P, ZHAI X Y, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence [J].Biomaterials, 2012, 33(13): 3604-3613.
CHENG L, LI Y M, ZHAI X Y, et al. Polycation-b-polyzwitterion copolymer grafted luminescent carbon dots as a multifunctional platform for serum-resistant gene delivery and bioimaging [J].ACS Appl. Mater. Interfaces, 2014, 6(22): 20487-20497.
WANG L Q, WANG X Y, BHIRDE A, et al. Carbon-dot-based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA [J].Adv. Health Mater., 2014, 3(8): 1203-1209.
LI R, WEI F D, WU X Q, et al. PEI modified orange emissive carbon dots with excitation-independent fluorescence emission for cellular imaging and siRNA delivery [J].Carbon, 2021, 177: 403-411.
HE X, CHEN P, ZHANG J, et al. Cationic polymer-derived carbon dots for enhanced gene delivery and cell imaging [J].Biomater. Sci., 2019, 7(5): 1940-1948.
LAN M H, ZHAO S J, ZHANG Z Y, et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy [J].Nano Res., 2017, 10(9): 3113-3123.
GE J C, JIA Q Y, LIU W M, et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice [J].Adv. Mater., 2015, 27(28): 4169-4177.
BAO X, YUAN Y, CHEN J Q, et al. In vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration [J].Light Sci. Appl., 2018, 7: 91-1-11.
GENG B J, SHEN W W, FANG F L, et al. Enriched graphitic N dopants of carbon dots as F cores mediate photothermal conversion in the NIR-Ⅱ window with high efficiency [J].Carbon, 2020, 162: 220-233.
JIA Q Y, ZHENG X L, GE J C, et al. Synthesis of carbon dots from hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer [J].J. Colloid Interface Sci., 2018, 526: 302-311.
LI Y B, BAI G X, ZENG S J, et al. Theranostic carbon dots with innovative NIR-Ⅱ emission for in vivo renal-excreted optical imaging and photothermal therapy [J].ACS Appl. Mater. Interfaces, 2019, 11(5): 4737-4744.
BAO Y W, HUA X W, LI Y H, et al. Hyperthemia-promoted cytosolic and nuclear delivery of copper/carbon quantum dot-crosslinked nanosheets: multimodal imaging-guided photothermal cancer therapy [J].ACS Appl. Mater. Interfaces, 2018, 10(2): 1544-1555.
TIAN B S, LIU S K, FENG L L, et al. Renal-clearable nickel-doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging-guided cancer therapy in the second near-infrared biowindow [J].Adv. Funct. Mater., 2021, 31(26): 2100549-1-12.
LI S H, ZHOU S X, LI Y C, et al. Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy [J].ACS Appl. Mater. Interfaces, 2017, 9(27): 22332-22341.
JIA Q Y, GE J C, LIU W M, et al. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy [J].Adv. Mater., 2018, 30(13): 1706090-1-10.
XUE M Y, ZHAO J J, ZHAN Z H, et al. Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy [J].Nanoscale, 2018, 10(38): 18124-18130.
SUN S, CHEN J Q, JIANG K, et al. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power [J].ACS Appl. Mater. Interfaces, 2019, 11(6): 5791-5803.
CHEN H M, QIU Y W, DING D D, et al. Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic therapy [J].Adv. Mater., 2018, 30(36): 1802748-1-9.
LIU R J, YANG Z M, ZHANG L L, et al. A near infrared dye-coated silver nanoparticle/carbon dot nanocomposite for targeted tumor imaging and enhanced photodynamic therapy [J].Nanoscale Adv., 2020, 2(1): 489-494.
GUO X L, DING Z Y, DENG S M, et al. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies [J].Carbon, 2018, 134: 519-530.
0
Views
776
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution