浏览全部资源
扫码关注微信
吉林大学化学学院 超分子结构与材料国家重点实验室,吉林 长春 130012
Published:01 August 2021,
Received:30 April 2021,
Revised:17 May 2021,
扫 描 看 全 文
Zhi-cheng ZHU, Bai YANG. Fabrication and Application of Fluorescence Biosensors Based on Carbon Dots and Aptamer. [J]. Chinese Journal of Luminescence 42(8):1196-1214(2021)
Zhi-cheng ZHU, Bai YANG. Fabrication and Application of Fluorescence Biosensors Based on Carbon Dots and Aptamer. [J]. Chinese Journal of Luminescence 42(8):1196-1214(2021) DOI: 10.37188/CJL.20210161.
近年来,基于碳点与适配体构建的荧光生物传感器引起了人们强烈的兴趣。与传统荧光染料、半导体量子点及稀土荧光材料相比,以碳点为荧光基元的生物传感器荧光稳定性更好,毒性更低,价格更便宜,在环境监测、生物成像及生物医疗方面有着广泛的应用前景。本文对基于碳点与适配体构建的荧光生物传感器发展现状进行了系统的总结,包括碳点与适配体介绍,近年来基于碳点与适配体的荧光生物传感器的构建方式、传感机理以及应用范围,最后对基于碳点与适配体构建的荧光生物传感器的发展方向进行了展望。
Recently
the fluorescence biosensor based on carbon dots(CDs) and aptamer is more and more attractive. Comparing with traditional fluorescence materials like fluorescence dye
semiconductor quantum dots and rare earth phosphors
CDs have attracted considerable attention in the field of fluorescence biosensor due to their excellent photoluminescence
low toxicity and low-cost prepare process. The fluorescence biosensor based on CDs and aptamer has extensive application prospect in the field of environment monitoring
bioimaging and biomedicine. This review will summarize the structural composition
fabrication methods
sensing mechanism and application area of fluorescence biosensor based on CDs and aptamer.
碳点适配体荧光生物传感器传感机理
carbon dotsaptamerfluorescence biosensorsensing mechanism
LI X, WANG G K, DING X L, et al. A “turn-on” fluorescent sensor for detection of Pb2+ based on graphene oxide and G-quadruplex DNA [J].Phys. Chem. Chem. Phys., 2013, 15(31): 12800-12804.
LI M, ZHOU X J, GUO S W, et al. Detection of lead (Ⅱ) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide [J].Biosens. Bioelectron., 2013, 43: 69-74.
CHEN H Q, REN J C. Sensitive determination of chromium (Ⅵ) based on the inner filter effect of upconversion luminescent nanoparticles (NaYF4∶Yb3+, Er3+) [J].Talanta, 2012, 99: 404-408.
XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].J. Am. Chem. Soc., 2004, 126(40): 12736-12737.
SUN X C, LEI Y. Fluorescent carbon dots and their sensing applications [J].TrAC Trends Analyt. Chem., 2017, 89: 163-180.
YANG M X, TANG Q L, MENG Y, et al. Reversible “Off-On” fluorescence of Zn2+-passivated carbon dots: mechanism and potential for the detection of EDTA and Zn2+ [J].Langmuir, 2018, 34(26): 7767-7775.
MA N, JIANG W T, LI T, et al. Fluorescence aggregation assay for the protein biomarker mucin 1 using carbon dot-labeled antibodies and aptamers [J].Microchim. Acta, 2015, 182(1-2): 443-447.
XIA Y K, WANG L L, LI J, et al. A ratiometric fluorescent bioprobe based on carbon dots and acridone derivate for signal amplification detection exosomal microRNA [J].Anal. Chem., 2018, 90(15): 8969-8976.
NAVANI N K, LI Y F. Nucleic acid aptamers and enzymes as sensors [J].Curr. Opin. Chem. Biol., 2006, 10(3): 272-281.
MAJDINASAB M, MISHRA R K, TANG X Q, et al. Detection of antibiotics in food: new achievements in the development of biosensors [J].TrAC Trends Anal. Chem., 2020, 127: 115883.
HOLZINGER M, LE GOFF A, COSNIER S. Nanomaterials for biosensing applications: a review [J].Front. Chem., 2014, 2: 63.
SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J].J. Am. Chem. Soc., 2006, 128(24): 7756-7757.
孙海珠, 杨国夺, 杨柏. 碳点的设计合成、结构调控及应用[J].高等学校化学学报, 2021, 42(2): 349-365.
SUN H Z, YANG G D, YANG B. Synthesis, structure control and applications of carbon dots [J].Chem. J. Chin. Univ., 2021, 42(2): 349-365. (in Chinese)
ZHU S J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots(graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective [J].Nano Res., 2015, 8(2): 355-381.
HU S L, NIU K Y, SUN J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation [J].J. Mater. Chem., 2009, 19(4): 484-488.
ZHOU J G, BOOKER C, LI R Y, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) [J].J. Am. Chem. Soc., 2007, 129(4): 744-745.
LI H T, HE X D, KANG Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J].Angew. Chem. Int. Ed., 2010, 49(26): 4430-4434.
ZHU S J, ZHANG J H, QIAO C Y, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications [J].Chem. Commun., 2011, 47(24): 6858-6860.
PAN D Y, ZHANG J C, LI Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J].Adv. Mater., 2010, 22(6): 734-738.
WANG X, CAO L, YANG S T, et al. Bandgap-like strong fluorescence in functionalized carbon nanoparticles [J].Angew. Chem. Int. Ed., 2010, 49(31): 5310-5314.
ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging [J].Angew. Chem. Int. Ed., 2013, 52(14): 3953-3957.
TAO S Y, FENG T L, ZHENG C Y, et al. Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials [J].J. Phys. Chem. Lett., 2019, 10(17): 5182-5188.
LIU J J, GENG Y J, LI D W, et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum [J].Adv. Mater., 2020, 32(17): 1906641-1-9.
JIANG K, SUN S, ZHANG L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging [J].Angew. Chem. Int. Ed., 2015, 54(18): 5360-5363.
MIAO X, QU D, YANG D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization [J].Adv. Mater., 2018, 30(1): 1704740-1-8.
HUANG J J, RONG M Z, ZHANG M Q. Preparation of graphene oxide and polymer-like quantum dots and their one-and two-photon induced fluorescence properties [J].Phys. Chem. Chem. Phys., 2016, 18(6): 4800-4806.
SHAO J R, ZHU S J, LIU H W, et al. Full-color emission polymer carbon dots with quench-resistant solid-state fluorescence [J].Adv. Sci., 2017, 4(12): 1700395-1-8.
LIU R L, WU D Q, LIU S H, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers [J].Angew. Chem. Int. Ed., 2009, 48(25): 4598-4601.
GU Z G, LI D J, ZHENG C, et al. MOF-templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications [J].Angew. Chem. Int. Ed., 2017, 56(24): 6853-6858.
LIU J J, LI R, YANG B. Carbon dots: a new type of carbon-based nanomaterial with wide applications [J].ACS Cent. Sci., 2020, 6(12): 2179-2195.
XIA C L, ZHU S J, FENG T L, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots [J].Adv. Sci., 2019, 6(23): 1901316-1-23.
乐妲, 冯唐略, 杨柏. 碳化聚合物点的核壳结构与功能[J].高分子学报, 2021, doi: 10.11777/j.issn1000-3304.2021.21105http://doi.org/10.11777/j.issn1000-3304.2021.21105.
YUE D, FENG T L, YANG B. The core-shell structure and functionality of carbonized polymer dots [J].Acta Polym. Sinica, 2021, doi: 10.11777/j.issn1000-3304.2021.21105http://doi.org/10.11777/j.issn1000-3304.2021.21105. (in Chinese)
刘艳红, 张东旭, 毛宝东, 等. 从量子点的角度审视碳点的研究进展[J].化学学报, 2020, 78(12): 1349-1365.
LIU Y H, ZHANG D X, MAO B D, et al. Progress in carbon dots from the perspective of quantum dots [J].Acta Chim. Sinica, 2020, 78(12): 1349-1365. (in Chinese)
TAO S Y, LU S Y, GENG Y J, et al. Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials [J].Angew. Chem. Int. Ed., 2018, 57(9): 2393-2398.
徐佳辉, 董晨, 丁海贞, 等. 余辉碳点材料的合成、发光机理和应用[J].发光学报, 2020, 41(12): 1567-1578.
XU J H, DONG C, DING H Z, et al. Synthesis, luminescence mechanism and applications of carbon dots with afterglow [J].Chin. J. Lumin., 2020, 41(12): 1567-1578. (in Chinese)
刘俊, 张熙荣, 熊焕明. 荧光碳点在指纹检测中的应用[J].发光学报, 2021, doi: 10.37188/CJL.20200334http://doi.org/10.37188/CJL.20200334.
LIU J, ZHANG X R, XIONG H M. Application of fluorescent carbon dots in fingerprint detection [J].Chin. J. Lumin., 2021, doi: 10.37188/CJL.20200334http://doi.org/10.37188/CJL.20200334. (in Chinese)
张震, 曲丹, 安丽, 等. 荧光碳点的制备、发光机理及应用[J].发光学报, 2021, doi: 10.37188/CJL.20210061http://doi.org/10.37188/CJL.20210061.
ZHANG Z, QU D, AN L, et al. Preparation, luminescence mechanism and application of fluorescent carbon dots [J].Chin. J. Lumin., 2021, doi: 10.37188/CJL.20210061http://doi.org/10.37188/CJL.20210061. (in Chinese)
ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands [J].Nature, 1990, 346(6287): 818-822.
TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J].Science, 1990, 249(4968): 505-510.
SONG S P, WANG L H, LI J, et al. Aptamer-based biosensors [J].TrAC Trends Anal. Chem., 2008, 27(2): 108-117.
KIM Y S, RASTON N H A, GU M B. Aptamer-based nanobiosensors [J].Biosens. Bioelectron., 2016, 76: 2-19.
WANG X Y, JIANG X, ZHANG Z H, et al. A fluorescence and resonance Rayleigh scattering di-model probe was developed for trace K+ coupled N-doped carbon dot and aptamer [J].J. Lumin., 2019, 214: 116559.
LI Z, NI Y N, KOKOT S. A new fluorescent nitrogen-doped carbon dot system modified by the fluorophore-labeled ssDNA for the analysis of 6-mercaptopurine and Hg (Ⅱ) [J].Biosens. Bioelectron., 2015, 74: 91-97.
QIAN Z S, SHAN X Y, CHAI L J, et al. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (Ⅱ) ion [J].Biosens. Bioelectron., 2015, 68: 225-231.
SABERI Z, REZAEI B, KHAYAMIAN T. A fluorescent aptasensor for analysis of adenosine triphosphate based on aptamer-magnetic nanoparticles and its single-stranded complementary DNA labeled carbon dots [J].Luminescence, 2018, 33(4): 640-646.
HUANG J Y, LI F L, GUO R B, et al. A signal-on ratiometric fluorometric heparin assay based on the direct interaction between amino-modified carbon dots and DNA [J].Microchim. Acta, 2018, 185(5): 260-1-9.
SINGH N K, CHAKMA B, JAIN P, et al. Protein-induced fluorescence enhancement based detection of Plasmodium falciparum glutamate dehydrogenase using carbon dot coupled specific aptamer [J].ACS Comb. Sci., 2018, 20(6): 350-357.
SHI M L, CEN Y, SOHAIL M, et al. Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots [J].Microchim. Acta, 2018, 185(1): 40-1-8.
GUO Y, ZHANG J C, ZHANG W H, et al. Green fluorescent carbon quantum dots functionalized with polyethyleneimine, and their application to aptamer-based determination of thrombin and ATP [J].Microchim. Acta, 2019, 186(11): 717-1-8.
WANG R J, XU Y, ZHANG T, et al. Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe [J].Anal. Methods, 2015, 7(5): 1701-1706.
LEE C H, RAJENDRAN R, JEONG M S, et al. Bioimaging of targeting cancers using aptamer-conjugated carbon nanodots[J].Chem. Commun., 2013, 49(58): 6543-6545.
XU W, XUE X J, LI T H, et al. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification [J].Angew. Chem. Int. Ed., 2009, 48(37): 6849-6852.
SONG G T, CHEN C E, REN J S, et al. A simple, universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzyme-responsive nanoparticle system [J].ACS Nano, 2009, 3(5): 1183-1189.
DONG H F, GAO W C, YAN F, et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules [J].Anal. Chem., 2010, 82(13): 5511-5517.
QADDARE S H, SALIMI A. Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: a novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level [J].Biosens. Bioelectron., 2017, 89: 773-780.
WANG C K, TAN R, CHEN D. Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles [J].Talanta, 2018, 182: 363-370.
XIANG W W, ZHANG Z J, WENG W Q, et al. Highly sensitive detection of carcinoembryonic antigen using copper-free click chemistry on the surface of azide cofunctionalized graphene oxide [J].Anal. Chim. Acta, 2020, 1127: 156-162.
QIAN Z S, SHAN X Y, CHAI L J, et al. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes [J].Biosens. Bioelectron., 2014, 60: 64-70.
WANG X M, CHEN C, CHEN Y F, et al. Detection of dibutyl phthalate in food samples by fluorescence ratio immunosensor based on dual-emission carbon quantum dot labelled aptamers [J].Food Agric. Immunol., 2020, 31(1): 813-826.
WANG X, XU G H, WEI F D, et al. Highly sensitive and selective aptasensor for detection of adenosine based on fluorescence resonance energy transfer from carbon dots to nano-graphite [J].J. Colloid Interface Sci., 2017, 508: 455-461.
ZHOU J R, AI R, WENG J J, et al. A “on-off-on” fluorescence aptasensor using carbon quantum dots and graphene oxide for ultrasensitive detection of the major shellfish allergen Arginine kinase [J].Microchem. J., 2020, 158: 105171.
CHENG X, CEN Y, XU G H, et al. Aptamer based fluorometric determination of ATP by exploiting the FRET between carbon dots and graphene oxide [J].Microchim. Acta, 2018, 185(2): 144-1-8.
LUO J P, SHEN X, LI B Z, et al. Signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP [J].Microchim. Acta, 2018, 185(8): 392-1-7.
YOU J H, YOU Z Y, XU X, et al. A split aptamer-labeled ratiometric fluorescent biosensor for specific detection of adenosine in human urine [J].Microchim. Acta, 2019, 186(1): 43-1-8.
QIAN Z S, SHAN X Y, CHAI L J, et al. A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA [J].Nanoscale, 2014, 6(11): 5671-5674.
SRINIVASAN K, SUBRAMANIAN K, MURUGAN K, et al. Sensitive fluorescence detection of mercury(Ⅱ) in aqueous solution by the fluorescence quenching effect of MoS2 with DNA functionalized carbon dots [J].Analyst, 2016, 141(22): 6344-6352.
SABERI Z, REZAEI B, FAROUKHPOUR H, et al. A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots [J].Microchim. Acta, 2018, 185(6): 303-1-10.
SABERI Z, REZAEI B, REZAEI P, et al. Design a fluorometric aptasensor based on CoOOH nanosheets and carbon dots for simultaneous detection of lysozyme and adenosine triphosphate [J].Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 233: 118197.
MA Y S, WANG Y, LIU Y J, et al. Multi-carbon dots and aptamer based signal amplification ratiometric fluorescence probe for protein tyrosine kinase 7 detection [J].J. Nanobiotechnol., 2021, 19(1): 47-1-11.
JIAO Z, ZHANG H F, JIAO S H, et al. A turn-on biosensor-based aptamer-mediated carbon quantum dots nanoaggregate for acetamiprid detection in complex samples [J].Food Anal. Methods, 2019, 12(3): 668-676.
XU B L, ZHAO C Q, WEI W L, et al. Aptamer carbon nanodot sandwich used for fluorescent detection of protein [J].Analyst, 2012, 137(23): 5483-5486.
MIAO H, WANG L, ZHUO Y, et al. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice [J].Biosens. Bioelectron., 2016, 86: 83-89.
KONG T T, ZHOU R H, ZHANG Y J, et al. AS1411 aptamer modified carbon dots via polyethylenimine-assisted strategy for efficient targeted cancer cell imaging [J].Cell Prolif., 2020, 53(1): e12713-1-9.
SABERI Z, REZAEI B, ENSAFI A A. Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide [J].Microchim. Acta, 2019, 186(5): 273-1-7.
HUANG S, WANG L M, ZHU F W, et al. A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA [J].RSC Adv., 2015, 5(55): 44587-44597.
PROBST C E, ZRAZHEVSKIY P, BAGALKOT V, et al. Quantum dots as a platform for nanoparticle drug delivery vehicle design[J].Adv. Drug Deliv. Rev., 2013, 65(5): 703-718.
KUMARI S, TIWARI M, DAS P. Multi format compatible visual and fluorometric detection of SEB toxin in nanogram range by carbon dot-DNA and acriflavine nano-assembly [J].Sens. Actuators B: Chem., 2019, 279: 393-399.
ZHENG M, XIE Z G, QU D, et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium (Ⅵ) and ascorbic acid based on the inner filter effect [J].ACS Appl. Mater. Interfaces, 2013, 5(24): 13242-13247.
YANG Y X, HOU J Z, HUO D Q, et al. Green emitting carbon dots for sensitive fluorometric determination of cartap based on its aggregation effect on gold nanoparticles [J].Microchim. Acta, 2019, 186(4): 259-1-8.
LI X C, ZHAO S J, LI B L, et al. Advances and perspectives in carbon dot-based fluorescent probes: mechanism, and application [J].Coord. Chem. Rev., 2021, 431: 213686.
QIN X F, LU Y P, BIAN M M, et al. Influence of gold nanoparticles in different aggregation states on the fluorescence of carbon dots and its application [J].Anal. Chim. Acta, 2019, 1091: 119-126.
ELMIZADEH H, FARIDBOD F, SOLEIMANI M, et al. Fluorescent apta-nanobiosensors for fast and sensitive detection of digoxin in biological fluids using rGQDs: comparison of two approaches for immobilization of aptamer [J].Sens. Actuators B: Chem., 2020, 302: 127133-1-11.
MOLAEI M J. Principles, mechanisms, and application of carbon quantum dots in sensors: a review [J].Anal. Methods, 2020, 12(10): 1266-1287.
ZHU W Y, SHEN X, ZHU C H, et al. Turn-on fluorescent assay based on purification system via magnetic separation for highly sensitive probing of adenosine [J].Sens. Actuators B: Chem., 2018, 259: 855-861.
ZHU L, XU G H, SONG Q, et al. Highly sensitive determination of dopamine by a turn-on fluorescent biosensor based on aptamer labeled carbon dots and nano-graphite [J].Sens. Actuators B: Chem., 2016, 231: 506-512.
GUO M L, HOU Q, WATERHOUSE G I N, et al. A simple aptamer-based fluorescent aflatoxin B1 sensor using humic acid as quencher [J].Talanta, 2019, 205: 120131.
WANG B, CHEN Y F, WU Y Y, et al. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1 [J].Biosens. Bioelectron., 2016, 78: 23-30.
WANG J L, LU T T, HU Y, et al. A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk [J].Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226: 117651.
SHAO K, WANG L F, WEN Y T, et al. Near-infrared carbon dots-based fluorescence turn on aptasensor for determination of carcinoembryonic antigen in pleural effusion [J].Anal. Chim. Acta, 2019, 1068: 52-59.
GHAYYEM S, FARIDBOD F. A fluorescent aptamer/carbon dots based assay for cytochrome c protein detection as a biomarker of cell apoptosis [J].Methods Appl. Fluoresc., 2018, 7(1): 015005.
WANG Z G, FU B S, ZOU S W, et al. Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells [J].Nano Res., 2016, 9(1): 214-223.
0
Views
424
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution