浏览全部资源
扫码关注微信
1.郑州大学 化学学院(绿色催化中心),河南 郑州 450001
2.吉林大学化学学院 超分子结构与材料国家重点实验室,吉林 长春 130012
Published:01 August 2021,
Received:28 April 2021,
Revised:12 May 2021,
扫 描 看 全 文
Wei-xue MENG, Bai YANG, Si-yu LU. From Carbon Dots to Carbonized Polymer Dots: Development and Challenges. [J]. Chinese Journal of Luminescence 42(8):1075-1094(2021)
Wei-xue MENG, Bai YANG, Si-yu LU. From Carbon Dots to Carbonized Polymer Dots: Development and Challenges. [J]. Chinese Journal of Luminescence 42(8):1075-1094(2021) DOI: 10.37188/CJL.20210155.
碳点(CDs)由于其出色的光学性能、高生物相容性和低毒性,因此在许多领域都具有潜在应用。对其光致发光(PL)机制的认识已得到广泛研究,对于指导可调节PL发射的CDs的合成和推广应用具有重要意义。但是,PL发射的内在机理尚不清楚,并且由于颗粒结构的差异,尚未找到统一的机理。本综述根据对结构和性能特征的分析,总结了一种新的CDs分类,称为碳化聚合物点(CPDs)。概述了与结构差异有关的三种PL机制:内部因素主导发射(包括共轭效应、表面状态和协同效应)、外部因素主导发射(包括分子态和环境效应)以及交联-发射增强。除此之外,还简要介绍了CDs的光学应用。最后,讨论了PL机制的研究前景,并指出了未来工作中存在的挑战和方向。
Carbon dots(CDs) may be useful in many fields due to its excellent optical properties
high biocompatibility and low toxicity. The knowledge of its photoluminescence(PL) mechanism has been extensively studied
which is of great significance for guiding the synthesis and popularization of CDs with adjustable PL emission. However
the internal mechanism of PL emission is still unclear
and due to the difference in particle structure
a unified mechanism has not yet been found. This review summarizes a new CDs classification based on the analysis of structural and performance characteristics
called carbonized polymer dots(CPDs). Three PL mechanisms related to structural differences are summarized: internal factors dominate emission(including conjugation effects
surface state and synergistic effects)
external factors dominate emission(including molecular state and environmental effects)
and cross-linking-emissions. The optical application of CDs is also briefly introduced. Finally
the prospects for research into PL mechanisms are discussed
noting the remaining challenges and directions for future work.
碳点光致发光机制表面态分子态交联增强发射
carbon dotsphotoluminescence mechanismssurface statemolecular statecrosslink-enhanced emission
XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].J. Am. Chem. Soc., 2004, 126(40): 12736-12737.
JIANG K, SUN S, ZHANG L, et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging [J].Angew. Chem. Int. Ed., 2015, 54(18): 5360-5363.
BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights [J].Angew. Chem. Int. Ed., 2010, 49(38): 6726-6744.
ZHANG X Y, JIANG M Y, NIU N, et al. Natural-product-derived carbon dots: from natural products to functional materials [J].ChemSusChem, 2018, 11(1): 11-24.
ROY P, CHEN P C, PERIASAMY A P, et al. Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications [J].Mater. Today, 2015, 18(8): 447-458.
AI L, YANG Y S, WANG B Y, et al. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives [J].Sci. Bull., 2021, 66(8): 839-856.
LIU J J, LU S Y, TANG Q L, et al. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis [J].Nanoscale, 2017, 9(21): 7135-7142.
HSU P C, CHEN P C, OU C M, et al. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells [J].J. Mater. Chem. B, 2013, 1(13): 1774-1781.
ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging [J].Angew. Chem. Int. Ed., 2013, 52(14): 3953-3957.
DENG L, WANG X L, KUANG Y, et al. Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots [J].Nano Res., 2015, 8(9): 2810-2821.
KASPRZYK W, ŚWIERGOSZ T, BEDNARZ S, et al. Luminescence phenomena of carbon dots derived from citric acid and urea-a molecular insight [J].Nanoscale, 2018, 10(29): 13889-13894.
ARCUDI F, DORDEVIC L, PRATO M. Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nanodots [J].Angew. Chem. Int. Ed., 2016, 55(6): 2107-2112.
DING H, YU S B, WEI J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism [J].ACS Nano, 2016, 10(1): 484-491.
ZHANG H Y, WANG B L, YU X W, et al. Carbon dots in porous materials: host-guest synergy for enhanced performance [J].Angew. Chem. Int. Ed., 2020, 59(44): 19390-19402.
TAO S Y, FENG T L, ZHENG C Y, et al. Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials [J].J. Phys. Chem. Lett., 2019, 10(17): 5182-5188.
ZHU S J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective [J].Nano Res., 2015, 8(2): 355-381.
ZHU S J, SONG Y B, SHAO J R, et al. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units [J].Angew. Chem. Int. Ed., 2015, 54(49): 14626-14637.
XIA C L, ZHU S J, FENG T L, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots [J].Adv. Sci., 2019, 6(23): 1901316-1-23.
AI L, SHI R, YANG J, et al. Efficient combination of G-C3N4 and CDs for enhanced photocatalytic performance: a review of synthesis, strategies, and applications [J].Small, 2021, doi: 10.1002/smll.202007523http://doi.org/10.1002/smll.202007523.
PAN D Y, ZHANG J C, LI Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J].Adv. Mater., 2010, 22(6): 734-738.
LI H T, HE X D, KANG Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J].Angew. Chem. Int. Ed., 2010, 49(26): 4430-4434.
GUO X, WANG C F, YU Z Y, et al. Facile access to versatile fluorescent carbon dots toward light-emitting diodes [J].Chem. Commun., 2012, 48(21): 2692-2694.
BOURLINOS A B, STASSINOPOULOS A, ANGLOS D, et al. Photoluminescent carbogenic dots [J].Chem. Mater., 2008, 20(14): 4539-4541.
TAO S Y, ZHU S J, FENG T L, et al. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: a review [J].Mater. Today Chem., 2017, 6: 13-25.
SONG Y B, ZHU S J, SHAO J R, et al. Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism [J].J. Polym. Sci. Part A:Polym. Chem., 2017, 55(4): 610-615.
XIA C L, TAO S Y, ZHU S J, et al. Hydrothermal addition polymerization for ultrahigh-yield carbonized polymer dots with room temperature phosphorescence via nanocomposite [J].Chem. Eur. J., 2018, 24(44): 11303-11308.
SONG Y B, ZHU S J, ZHANG S T, et al. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine [J].J. Mater. Chem. C, 2015, 3(23): 5976-5984.
SHAMSIPUR M, BARATI A, TAHERPOUR A A, et al. Resolving the multiple emission centers in carbon dots: from fluorophore molecular states to aromatic domain states and carbon-core states [J].J. Phys. Chem. Lett., 2018, 9(15): 4189-4198.
WANG X, CAO L, YANG S T, et al. Bandgap-like strong fluorescence in functionalized carbon nanoparticles [J].Angew. Chem. Int. Ed., 2010, 49(31): 5310-5314.
SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J].J. Am. Chem. Soc., 2006, 128(24): 7756-7757.
KWON W, DO S, KIM J H, et al. Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines [J].Sci. Rep., 2015, 5(1): 12604-1-10.
BHATTACHARYA A, DAS S, MUKHERJEE T K. Insights into the thermodynamics of polymer nanodot-human serum albumin association: a spectroscopic and calorimetric approach [J].Langmuir, 2016, 32(46): 12067-12077.
SUN X C, BRÜCKNER C, LEI Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission [J].Nanoscale, 2015, 7(41): 17278-17282.
DING H, WEI J S, ZHANG P, et al. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths [J].Small, 2018, 14(22): 1800612.
SK M A, ANANTHANARAYANAN A, HUANG L, et al. Revealing the tunable photoluminescence properties of graphene quantum dots [J].J. Mater. Chem. C, 2014, 2(34): 6954-6960.
MIAO X, QU D, YANG D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization [J].Adv. Mater., 2018, 30(1): 1704740-1-8.
TANG L B, JI R B, CAO X K, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots [J].ACS Nano, 2012, 6(6): 5102-5110.
BAO L, ZHANG Z L, TIAN Z Q, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism [J].Adv. Mater., 2011, 23(48): 5801-5806.
KUNDELEV E V, TEPLIAKOV N V, LEONOV M Y, et al. Amino functionalization of carbon dots leads to red emission enhancement [J].J. Phys. Chem. Lett., 2019, 10(17): 5111-5116.
LI X M, ZHANG S L, KULINICH S A, et al. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection [J].Sci. Rep., 2014, 4(1): 4976-1-8.
LIU L Q, LI Y F, ZHAN L, et al. One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions [J].Sci. China Chem., 2011, 54(8): 1342-1347.
ZHENG H Z, WANG Q L, LONG Y J, et al. Enhancing the luminescence of carbon dots with a reduction pathway [J].Chem. Commun., 2011, 47(38): 10650-10652.
DONG Y Q, PANG H C, YANG H B, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission [J].Angew. Chem. Int. Ed., 2013, 52(30): 7800-7804.
JIANG L, DING H Z, LU S Y, et al. Photoactivated fluorescence enhancement in F, N-doped carbon dots with piezochromic behavior [J].Angew. Chem. Int. Ed., 2020, 59(25): 9986-9991.
JIANG L, DING H Z, XU M S, et al. UV-Vis-NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo [J].Small, 2020, 16(19): 2000680.
SARKAR S, DAS K, GHOSH M, et al. Amino acid functionalized blue and phosphorous-doped green fluorescent carbon dots as bioimaging probe [J].RSC Adv., 2015, 5(81): 65913-65921.
SONG T, ZHAO Y, WANG T, et al. Carbon dots doped with n and s towards controlling emitting [J].J. Fluoresc., 2020, 30(1): 81-89.
YANG S W, SUN J, LI X B, et al. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection [J].J. Mater. Chem. A, 2014, 2(23): 8660-8667.
MIAO S H, LIANG K, ZHU J J, et al. Hetero-atom-doped carbon dots: doping strategies, properties and applications [J].Nano Today, 2020, 33: 100879.
MONDAL S, YUCKNOVSKY A, AKULOV K, et al. Efficient photosensitizing capabilities and ultrafast carrier dynamics of doped carbon dots [J].J. Am. Chem. Soc., 2019, 141(38): 15413-15422.
LONG P, FENG Y Y, CAO C, et al. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots [J].Adv. Funct. Mater., 2018, 28(37): 1800791-1-10.
YU J J, LIU C, YUAN K, et al. Luminescence mechanism of carbon dots by tailoring functional groups for sensing Fe3+ ions [J].Nanomaterials, 2018, 8(4): 233-2-12.
LIU C, BAO L, YANG M L, et al. Surface sensitive photoluminescence of carbon nanodots: coupling between the carbonyl group and π-electron system [J].J. Phys. Chem. Lett., 2019, 10(13): 3621-3629.
BAO L, LIU C, ZHANG Z L, et al. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning [J].Adv. Mater., 2015, 27(10): 1663-1667.
KASPRZYK W, BEDNARZ S, ŻMUDZKI P, et al. Novel efficient fluorophores synthesized from citric acid [J].RSC Adv., 2015, 5(44): 34795-34799.
LIU X H, LI H B, SHI L J, et al. Structure and photoluminescence evolution of nanodots during pyrolysis of citric acid: from molecular nanoclusters to carbogenic nanoparticles [J].J. Mater. Chem. C, 2017, 5(39): 10302-10312.
SHI L, YANG J H, ZENG H B, et al. Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores [J].Nanoscale, 2016, 8(30): 14374-14378.
STRAUSS V, WANG H Z, DELACROIX S, et al. Carbon nanodots revised: the thermal citric acid/urea reaction [J].Chem. Sci., 2020, 11(31): 8256-8266.
ZHANG T X, ZHU J Y, ZHAI Y, et al. A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission [J].Nanoscale, 2017, 9(35): 13042-13051.
TIAN Z, ZHANG X T, LI D, et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes [J].Adv. Opt. Mater., 2017, 5(19): 1700416-1-9.
KHAN S, GUPTA A, VERMA N C, et al. Time-resolved emission reveals ensemble of emissive states as the origin of multicolor fluorescence in carbon dots [J].Nano Lett., 2015, 15(12): 8300-8305.
STEPANIDENKO E A, AREFINA I A, KHAVLYUK P D, et al. Influence of the solvent environment on luminescent centers within carbon dots [J].Nanoscale, 2020, 12(2): 602-609.
ARSHAD F, PAL A, RAHMAN M A, et al. Insights on the solvatochromic effects in N-doped yellow-orange emissive carbon dots [J].New J. Chem., 2018, 42(24): 19837-19843.
YU P, WEN X M, TOH Y R, et al. Temperature-dependent fluorescence in carbon dots [J].J. Phys. Chem. C, 2012, 116(48): 25552-25557.
WANG C X, XU Z Z, CHENG H, et al. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature [J].Carbon, 2015, 82: 87-95.
LU S Y, XIAO G J, SUI L, et al. Piezochromic carbon dots with two-photon fluorescence [J].Angew. Chem. Int. Ed., 2017, 56(22): 6187-6191.
WANG Z F, YUAN F L, LI X H, et al. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes [J].Adv. Mater., 2017, 29(37): 1702910-1-7.
YUAN F L, HE P, XI Z F, et al. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays [J].Nano Res., 2019, 12(7): 1669-1674.
TAO S Y, ZHU S J, FENG T L, et al. Crosslink-enhanced emission effect on luminescence in polymers: advances and perspectives [J].Angew. Chem. Int. Ed., 2020, 59(25): 9826-9840.
ZHU S J, WANG L, ZHOU N, et al. The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization [J].Chem. Commun., 2014, 50(89): 13845-13848.
TONG D Y, LI W Y, ZHAO Y X, et al. Non-conjugated polyurethane polymer dots based on crosslink enhanced emission (CEE) and application in Fe3+ sensing [J].RSC Adv., 2016, 6(99): 97137-97141.
VALLAN L, URRIOLABEITIA E P, RUIPÉREZ F, et al. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots [J].J. Am. Chem. Soc., 2018, 140(40): 12862-12869.
TAO S Y, SONG Y B, ZHU S J, et al. A new type of polymer carbon dots with high quantum yield: From synthesis to investigation on fluorescence mechanism [J].Polymer, 2017, 116: 472-478.
WEI S M, FENG K, LI C, et al. ZnCl2 enabled synthesis of highly crystalline and emissive carbon dots with exceptional capability to generate O2·- [J].Matter, 2020, 2(2): 495-506.
LIU X J, LIU L T, HU X J, et al. Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection [J].Nano Res., 2018, 11(3): 1262-1273.
WANG C Y, XIE J N, DONG X H, et al. Clinically approved carbon nanoparticles with oral administration for intestinal radioprotection via protecting the small intestinal crypt stem cells and maintaining the balance of intestinal flora [J].Small, 2020, 16(16): 1906915.
HUA X W, BAO Y W, WU F G. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery [J].ACS Appl. Mater. Interfaces, 2018, 10(13): 10664-10677.
LIU Y Y, YU N Y, FANG W D, et al. Photodegradation of carbon dots cause cytotoxicity [J].Nat. Commun., 2021, 12(1): 812-1-12.
ZHOU Q F, GONG N Q, ZHANG D Y, et al. Mannose-derived carbon dots amplify microwave ablation-induced antitumor immune responses by capturing and transferring “danger signals” to dendritic cells [J].ACS Nano, 2021, 15(2): 2920-2932.
SUN K, LIU S K, LIU J, et al. Improving the accuracy of pdot-based continuous glucose monitoring by using external ratiometric calibration [J].Anal. Chem., 2021, 93(4): 2359-2366.
SHEN Y Z, WU T T, WANG Y Q, et al. Nucleolin-targeted ratiometric fluorescent carbon dots with a remarkably large emission wavelength shift for precise imaging of cathepsin b in living cancer cells [J].Anal. Chem., 2021, 93(8): 4042-4050.
SUN S, ZHANG L, JIANG K, et al. Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents [J].Chem. Mater., 2016, 28(23): 8659-8668.
ZHENG M, RUAN S B, LIU S, et al. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells [J].ACS Nano, 2015, 9(11): 11455-11461.
LIU J J, LI D W, ZHANG K, et al. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging [J].Small, 2018, 14(15): 1703919-1-10.
SU Y, LIU S, GUAN Y Y, et al. Renal clearable Hafnium-doped carbon dots for CT/fluorescence imaging of orthotopic liver cancer [J].Biomaterials, 2020, 255: 120110.
ZHAO B, TAN Z A. Fluorescent carbon dots: fantastic electroluminescent materials for light-emitting diodes [J].Adv. Sci., 2021, 8(7): 2001977.
JAGANNATHAN M, DHINASEKARAN D, SOUNDHARRAJ P, et al. Green synthesis of white light emitting carbon quantum dots: fabrication of white fluorescent film and optical sensor applications [J].J. Hazard. Mater., 2021, 416: 125091.
SHAO J R, ZHU S J, LIU H W, et al. Full-color emission polymer carbon dots with quench-resistant solid-state fluorescence [J].Adv. Sci., 2017, 4(12): 1700395-1-8.
FENG T L, ZENG Q S, LU S Y, et al. Color-tunable carbon dots possessing solid-state emission for full-color light-emitting diodes applications [J].ACS Photonics, 2018, 5(2): 502-510.
ZHANG X Y, ZENG Q S, XIONG Y, et al. Energy level modification with carbon dot interlayers enables efficient perovskite solar cells and quantum dot based light-emitting diodes [J].Adv. Funct. Mater., 2020, 30(11): 1910530-1-9.
HE P, SHI Y X, MENG T, et al. Recent advances in white light-emitting diodes of carbon quantum dots [J].Nanoscale, 2020, 12(8): 4826-4832.
YUAN F L, WANG Z B, LI X H, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes [J].Adv. Mater., 2017, 29(3): 1604436-1-6.
YUAN F L, YUAN T, SUI L Z, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs [J].Nat. Commun., 2018, 9(1): 2249-1-11.
NIE H, LI M J, LI Q S, et al. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing [J].Chem. Mater., 2014, 26(10): 3104-3112.
GAO P L, WANG J W, ZHENG M, et al. Lysosome targeting carbon dots-based fluorescent probe for monitoring pH changes in vitro and in vivo [J].Chem. Eng. J., 2020, 381: 122665.
GAO P L, XIE Z G, ZHENG M. Chiral carbon dots-based nanosensors for Sn(Ⅱ) detection and lysine enantiomers recognition [J].Sens. Actuators B:Chem., 2020, 319: 128265-1-8.
SHANGGUAN J F, HE D G, HE X X, et al. Label-free carbon-dots-based ratiometric fluorescence ph nanoprobes for intracellular ph sensing [J].Anal. Chem., 2016, 88(15): 7837-7843.
LU S Y, ZHAO X H, ZHU S J, et al. Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence [J].Nanoscale, 2014, 6(22): 13939-13944.
CUI J, LIU T J, LIANG D P, et al. A novel dual-emission QDs/PCDs assembled composite nanoparticle for high sensitive visual detection of Hg2+ [J].RSC Adv., 2017, 7(78): 49330-49336.
YANG M X, TANG Q L, MENG Y, et al. Reversible “off-on” fluorescence of Zn2+-passivated carbon dots: mechanism and potential for the detection of edta and Zn2+ [J].Langmuir, 2018, 34(26): 7767-7775.
TIAN Z, LI D, USHAKOVA E V, et al. Multilevel data encryption using thermal-treatment controlled room temperature phosphorescence of carbon dot/polyvinylalcohol composites [J].Adv. Sci., 2018, 5(9): 1800795-1-7.
GAO Y F, ZHANG H L, SHUANG S M, et al. Visible-light-excited ultralong-lifetime room temperature phosphorescence based on nitrogen-doped carbon dots for double anticounterfeiting [J].Adv. Opt. Mater., 2020, 8(7): 1901557-1-7.
WANG B L, MU Y, ZHANG H Y, et al. Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks [J].ACS Cent. Sci., 2019, 5(2): 349-356.
ZHANG H Y, LIU K K, LIU J C, et al. Carbon dots-in-zeolite via in-situ solvent-free thermal crystallization: achieving high-efficiency and ultralong afterglow dual emission [J].CCS Chem., 2020, 2(3): 118-127.
JIANG K, WANG Y H, CAI C Z, et al. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications [J].Adv. Mater., 2018, 30(26): 1800783-1-8.
FENG Q, XIE Z G, ZHENG M. Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots [J].Chem. Eng. J., 2021, 420: 127647.
LIU J C, WANG N, YU Y, et al. Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes [J].Sci. Adv., 2017, 3(54): e1603171-1-8.
ZHANG H Y, LIU J C, WANG B L, et al. Zeolite-confined carbon dots: tuning thermally activated delayed fluorescence emission via energy transfer [J].Mater. Chem. Front., 2020, 4(5): 1404-1410.
WANG B L, YU Y, ZHANG H Y, et al. Carbon dots in a matrix: energy-transfer-enhanced room-temperature red phosphorescence [J].Angew. Chem. Int. Ed., 2019, 58(51): 18443-18448.
LIU J C, ZHANG H Y, WANG N, et al. Template-modulated afterglow of carbon dots in zeolites: room-temperature phosphorescence and thermally activated delayed fluorescence [J].ACS Mater. Lett., 2019, 1(1): 58-63.
LI W, ZHOU W, ZHOU Z S, et al. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix [J].Angew. Chem. Int. Ed., 2019, 58(22): 7278-7283.
TAO S Y, LU S Y, GENG Y J, et al. Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials [J].Angew. Chem. Int. Ed., 2018, 57(9): 2393-2398.
PARK M, KIM H S, YOON H, et al. Controllable singlet-triplet energy splitting of graphene quantum dots through oxidation: from phosphorescence to TADF [J].Adv. Mater., 2020, 32(31): 2000936.
0
Views
650
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution