浏览全部资源
扫码关注微信
河南理工大学 物理与电子信息学院,河南 焦作 454000
Published:01 October 2021,
Received:28 April 2021,
Revised:22 May 2021,
移动端阅览
JIAN XU, ZHI JIANG, PENG XU, et al. Scattering Control Strategies in Phosphors for Laser Lighting Application——Mini Review. [J]. Chinese journal of luminescence, 2021, 42(10): 1637-1645.
JIAN XU, ZHI JIANG, PENG XU, et al. Scattering Control Strategies in Phosphors for Laser Lighting Application——Mini Review. [J]. Chinese journal of luminescence, 2021, 42(10): 1637-1645. DOI: 10.37188/CJL.20210153.
基于半导体激光器激发荧光材料的白光激光照明(wLD)技术在超高亮度照明和显示领域具有重要的应用价值。兼具“高光通量”和“可控发光面积”是wLD实现高亮度的前提条件。因此,荧光材料如何在具备高饱和阈值的前提下,有效地限定发光光斑尺寸,成为该领域的一个热点问题。基于荧光材料微结构设计的散射调控技术为解决该问题提供了可能。本文首先对荧光材料中通过散射设计实现可控发光面积的研究进行了总结;其次探讨了散射系数对材料发光特性的影响;然后介绍了相关研究中的两个关键技术:发光光斑尺寸的测量方法和基于数值模拟的光斑尺寸预测方法;最后展望了相关研究的发展趋势。
Novel ultra-high-luminance laser lighting technique based on pumping phosphor by laser diode shows broad application prospect. To achieve high-luminance
a laser lighting luminaire is essential to possess high luminous flux and small light-emitting area. Therefore
it is essential for phosphor to possess both high saturation threshold and strong spot size limitation ability. The microstructure design and scattering control in phosphor materials show potential to solve this problem. In this paper
the studies on spot size of laser lighting were introduced
and the effect of scattering coefficient on the luminescence properties was discussed. After that
some key techniques including measurement and simulation on spot size were presented. Lastly
some future directions were prospected.
激光照明荧光材料散射系数光斑尺寸高亮度
laser lightingphosphorscattering coefficientspot sizehigh-luminance
JRWIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J].Laser Photonics Rev., 2013, 7(6): 963-993.
LI S X, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting[J].Laser Photonics Rev., 2108, 12(12): 1800173-1-29.
BEHRINGER M, KÖNIG H. Blue high-power laser diodes—beam sources for novel applications[J].Photonics Views, 2020, 17(2): 60-63.
MASUI S, YAMAMOTO T, NAGAHAMA S I. A white light source excited by laser diodes[J].Electron. Commun. Jpn., 2015, 98(5): 23-27.
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives[J].Chem. Rev., 2018, 118(4): 1951-2009.
LIN H, HU T, CHENG Y, et al. Glass ceramic phosphors: towards long-lifetime high-power white light-emitting-diode applications—a review[J].Laser Photonics Rev., 2018, 12(6): 1700344-1-31.
ZHU Q Q, WANG X J, WANG L, et al. β-sialon∶Eu phosphor-in-glass: a robust green color converter for high power blue laser lighting[J].J. Mater. Chem. C, 2015, 3(41): 10761-10766.
WU H J, HAO Z D, PAN G H, et al. Phosphor-SiO2 composite films suitable for white laser lighting with excellent color rendering[J].J. Eur. Ceram. Soc., 2020, 40(6): 2439-2444.
XU J, YANG Y, GUO Z Q, et al. Comparative study of Al2O3-YAG∶Ce composite ceramic and single crystal YAG∶Ce phosphors for high-power laser lighting[J].Ceram. Int., 2020, 46(11): 17923-17928.
ZHENG P, LI S X, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light[J].Laser Photonics Rev., 2019, 13(10): 1900147-1-10.
KRASNOSHCHOKA A, THORSETH A, DAM-HANSEN C, et al. Investigation of saturation effects in ceramic phosphors for laser lighting[J].Materials, 2017, 10(12): 1407-1-9.
XU J, YANG Y, GUO Z Q, et al. Design of a CaAlSiN3∶Eu/glass composite film: facile synthesis, high saturation-threshold and application in high-power laser lighting[J].J. Eur. Ceram. Soc., 2020, 40(13): 4704-4708.
XU J, THORSETH A, XU C, et al. Investigation of laser-induced luminescence saturation in a single-crystal YAG∶Ce phosphor: towards unique architecture, high saturation threshold, and high-brightness laser-driven white lighting[J].J. Lumin., 2019, 212: 279-285.
CANTORE M, PFAFF N, FARRELL R M, et al. High luminous flux from single crystal phosphor-converted laser-based white lighting system[J].Opt. Express, 2016, 24(2): A215-A221.
MA Y P, LUO X B. Packaging for laser-based white lighting: status and perspectives[J].J. Electron. Packag., 2020, 142(1): 010801-1-14.
KRASNOSHCHOKA A, HANSEN A K, THORSETH A, et al. Phosphor material dependent spot size limitations in laser lighting[J].Opt. Express, 2020, 28(4): 5758-5767.
WEI R, WANG L, ZHENG P, et al. On the luminance saturation of phosphor-in-glass(PiG) films for blue-laser-driven white lighting: effects of the phosphor content and the film thickness[J].J. Eur. Ceram. Soc., 2019, 39(5): 1909-1917.
LI S X, ZHU Q Q, TANG D M, et al. Al2O3-YAG∶Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting[J].J. Mater. Chem. C, 2016, 4(37): 8648-8654.
ZHANG Q, ZHENG R L, DING J Y, et al. High lumen density of Al2O3-LuAG∶Ce composite ceramic for high-brightness display[J].J. Am. Ceram. Soc., 2021, 104(7): 3260-3268.
JANSEN T, BÖHNISCH D, JÜSTEL T. On the photoluminescence linearity of Eu2+ based LED phosphors upon high excitation density[J].ECS J. Solid State Sci. Technol., 2016, 5(6): R91-R97.
FUJITA S, UMAYAHARA Y, TANABE S. Influence of light scattering on luminous efficacy in Ce∶YAG glass-ceramic phosphor[J].J. Ceram. Soc. Jpn., 2010, 118(2): 128-131.
ZHANG R, LIN H, YU Y L, et al. A new-generation color converter for high-power white LED: transparent Ce3+∶YAG phosphor-in-glass[J].Laser Photonics Rev., 2014, 8(1): 158-164.
LIU Z H, LI S X, HUANG Y H, et al. The effect of the porosity on the Al2O3-YAG∶Ce phosphor ceramic: microstructure, luminescent efficiency, and luminous stability in laser-driven lighting[J].J. Alloys Compd., 2019, 785: 125-130.
XU J, YANG Y, JIANG Z, et al. CaAlSiN3∶Eu/glass composite film in reflective configuration: a thermally robust and efficient red-emitting color converter with high saturation threshold for high-power high color rendering laser lighting[J].Ceram. Int., 2021, 47(11): 15307-15312.
LI S X, ZHU Q Q, WANG L, et al. CaAlSiN3∶Eu2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting[J].J. Mater. Chem. C, 2016, 4(35): 8197-8205.
LI S X, TANG D M, TIAN Z F, et al. New insights into the microstructure of translucent CaAlSiN3∶Eu2+ phosphor ceramics for solid-state laser lighting[J].J. Mater. Chem. C, 2017, 5(5): 1042-1051.
ZHANG Y J, ZHANG Z L, LIU X D, et al. A high quantum efficiency CaAlSiN3∶Eu2+ phosphor-in-glass with excellent optical performance for white light-emitting diodes and blue laser diodes[J].Chem. Eng. J., 2020, 401: 125983.
ZHU Q Q, XU X, WANG L, et al. A robust red-emitting phosphor-in-glass(PiG) for use in white lighting sources pumped by blue laser diodes[J].J. Alloys Compd., 2017, 702: 193-198.
ZHENG P, LI S X, WANG L, et al. Unique color converter architecture enabling phosphor-in-glass(PiG) films suitable for high-power and high-luminance laser-driven white lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(17): 14930-14940.
XU J, YANG Y, WANG J, et al. Industry-friendly synthesis and high saturation threshold of a LuAG∶Ce/glass composite film realizing high-brightness laser lighting[J].J. Eur. Ceram. Soc., 2020, 40(15): 6031-6036.
ZHANG Y L, HU S, WANG Z J, et al. Pore-existing Lu3Al5O12∶Ce ceramic phosphor: an efficient green color converter for laser light source[J].J. Lumin., 2018, 197: 331-334.
LIU X, QIAN X L, HU Z W, et al. Al2O3-Ce∶GdYAG composite ceramic phosphors for high-power white light-emitting-diode applications[J].J. Eur. Ceram. Soc., 2019, 39(6): 2149-2154.
COZZAN C, LHEUREUX G, O'DEA N, et al. Stable, heat-conducting phosphor composites for high-power laser lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(6): 5673-5681.
LIU Z H, LI S X, HUANG Y H, et al. Composite ceramic with high saturation input powder in solid-state laser lighting: microstructure, properties, and luminous emittances[J].Ceram. Int., 2018, 44(16): 20232-20238.
APETZ R, VAN BRUGGEN M P B. Transparent alumina: a light-scattering model[J].J. Am. Ceram. Soc., 2003, 86(3): 480-486.
LEE D H, JOO J Y, LEE S K. Modeling of reflection-type laser-driven white lighting considering phosphor particles and surface topography[J].Opt. Express, 2015, 23(15): 18872-18887.
MERETSKA M L, UPPU R, VISSENBERG G, et al. Analytical modeling of light transport in scattering materials with strong absorption[J].Opt. Express, 2017, 25(20): A906-A921.
WANG L, JACQUES S L, ZHENG L. MCML—Monte Carlo modeling of light transport in multi-layered tissues[J].Comput. Methods Programs Biomed., 1995, 47(2): 131-146.
0
Views
325
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution