浏览全部资源
扫码关注微信
浙江大学材料科学与工程学院 硅材料国家重点实验室,浙江 杭州 310027
Published:01 September 2021,
Received:25 April 2021,
Revised:30 May 2021,
移动端阅览
WEI ZHANG, MENG-TING HE, XU-SHENG QIAO, et al. Research Progress of Mn4+ Activated Typical LED Red Phosphors. [J]. Chinese journal of luminescence, 2021, 42(9): 1345-1364.
WEI ZHANG, MENG-TING HE, XU-SHENG QIAO, et al. Research Progress of Mn4+ Activated Typical LED Red Phosphors. [J]. Chinese journal of luminescence, 2021, 42(9): 1345-1364. DOI: 10.37188/CJL.20210148.
Mn
4+
激活的红色荧光粉具有宽带吸收、窄带发射、色纯度高以及成本低的特点,在白光发光二极管(Light emitting diode
LED)室内照明、农业上辅助植物生长、背光显示等领域的研究备受关注。本文综述了Mn
4+
激活的典型LED用红色荧光粉研究进展。首先讨论了Mn
4+
发光的晶体场理论,归纳了近来报道的Mn
4+
激活氟化物与铝酸盐荧光粉;然后总结了如何从机理上优化光谱学性能、改善热猝灭性能和湿化学稳定性;最后说明了尚待解决的问题并展望了未来发展趋势。
Mn
4+
-doped red phosphors have attracted much attention in the fields of white LED indoor lighting
agricultural plant growth and backlight displaying
due to the advantages of broad-band absorption
narrow-band emission
high color purity and low cost. This work reviews recent progress of Mn
4+
activated typical LED red phosphors. First
the crystal field theory of Mn
4+
is discussed. Then
the research progress of Mn
4+
activated fluorides and aluminates is summarized. Next
how to improve luminescence performance
thermal stability and moisture resistance are discussed theoretically. Finally
the main problems in the development of Mn
4+
doped red phosphors are presented and the future trends are prospected.
LED光致发光Mn4+红色荧光粉
LEDphotoluminescenceMn4+red phosphors
SCHUBERT E F, KIM J K. Solid-state light sources getting smart [J].Science, 2005, 308(5726):1274-1278.
LI J H, YAN J, WEN D W, et al. Advanced red phosphors for white light-emitting diodes [J].J. Mater. Chem. C, 2016, 4(37):8611-8623.
ZHANG X J, YU J B, WANG J, et al. All-inorganic light convertor based on phosphor-in-glass engineering for next-generation modular high-brightness white LEDs/LDs [J].ACS Photonics, 2017, 4(4):986-995.
CHEN W T, SHEU H S, LIU R S, et al.Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors [J].J. Am. Chem. Soc., 2012, 134(19):8022-8025.
ZHANG X J, TSAI Y T, WU S M, et al. Facile atmospheric pressure synthesis of high thermal stability and narrow-band red-emitting SrLiAl3N4∶Eu2+ phosphor for high color rendering index white light-emitting diodes [J].ACS Appl. Mater. Interfaces, 2016, 8(30):19612-19617.
FELDMANN C, JÜSTEL T, RONDA C R, et al. Inorganic luminescent materials:100 years of research and application [J].Adv. Funct. Mater., 2003, 13(7):511-516.
DAICHO H, IWASAKI T, ENOMOTO K, et al. A novel phosphor for glareless white light-emitting diodes [J].Nat. Commun., 2012, 3(1):1132-1-8.
ZEUNER M, SCHMIDT P J, SCHNICK W. One-pot synthesis of single-source precursors for nanocrystalline LED phosphors M2Si5N8∶Eu2+ (M=Sr, Ba) [J].Chem. Mater., 2009, 21(12):2467-2473.
XIE R J, HIROSAKI N. Silicon-based oxynitride and nitride phosphors for white LEDs—a review [J].Sci. Technol. Adv. Mater., 2007, 8(7-8):588-600.
STEIGERWALD D A, BHAT J C, COLLINS D, et al. Illumination with solid state lighting technology [J].IEEE J. Sel. Top. Quantum Electron., 2002, 8(2):310-320.
HUANG X Y. Red phosphor converts white LEDs [J].Nat. Photonics, 2014, 8(10):748-749.
ZHAO M, ZHANG Q Y, XIA Z G. Narrow-band emitters in LED backlights for liquid-crystal displays [J].Mater. Today, 2020, 40:246-265.
UHEDA K, HIROSAKI N, YAMAMOTO Y, et al. Luminescence properties of a red phosphor, CaAlSiN3∶Eu2+, for white light-emitting diodes [J].Electrochem. Solid-State Lett., 2006, 9(4):H22-H25.
LI Y Q, VAN STEEN J E J, VAN KREVEL J W H, et al. Luminescence properties of red-emitting M2Si5N8∶Eu2+(M=Ca, Sr, Ba) LED conversion phosphors [J].J. Alloys Compd., 2006, 417(1-2):273-279.
PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]∶Eu2+ as a next-generation LED-phosphor material [J].Nat. Mater., 2014, 13(9):891-896.
SCHMIECHEN S, SCHNEIDER H, WAGATHA P, et al. Toward new phosphors for application in illumination-grade white pc-LEDs:the nitridomagnesosilicates Ca[Mg3SiN4]∶Ce3+, Sr[Mg3SiN4]∶Eu2+, and Eu[Mg3SiN4] [J].Chem. Mater., 2014, 26(8):2712-2719.
VERSTRAETE R, SIJBOM H F, JOOS J J, et al. Red Mn4+-doped fluoride phosphors:why purity matters [J].ACS Appl. Mater. Interfaces, 2018, 10(22):18845-18856.
CHEN D Q, ZHOU Y, ZHONG J S. A review on Mn4+ activators in solids for warm white light-emitting diodes [J].RSC Adv., 2016, 6(89):86285-86296.
BLASSE G, GRABMAIER B C. Luminescent Materials [M].Berlin: Springer, 1994.
周亚运, 王玲燕, 邓婷婷, 等. Mn4+掺杂氟化物窄带发射红色荧光粉的研究进展[J].中国科学:技术科学, 2017, 47(11):1111-1125.
ZHOU Y Y, WANG L Y, DENG T T, et al. Recent advances in Mn4+-doped fluoride narrow-band red-emitting phosphors [J].Sci. Sinica Technol., 2017, 47(11):1111-1125. (in Chinese)
ADACHI S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications:a review [J].J. Lumin., 2018, 202:263-281.
ADACHI S. Photoluminescence spectra and modeling analyses of Mn4+-activated fluoride phosphors:a review [J].J. Lumin., 2018, 197:119-130.
ADACHI S. Crystal-field and Racah parameters of Mn4+ ion in red and deep red-emitting phosphors:fluoride versus oxide phosphor [J].J. Lumin., 2020, 218:116829.
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M, et al. Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect [J].ECS J. Solid State Sci. Technol., 2016, 5(1):R3067-1-11.
ZHU H M, LIN C C, LUO W Q, et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes [J].Nat. Commun., 2014, 5(1):4312-1-10.
PAULUSZ A G. Efficient Mn(Ⅳ) emission in fluorine coordination [J].J. Electrochem. Soc., 1973, 120(7):942-947.
ADACHI S, TAKAHASHI T. Photoluminescent properties of K2GeF6∶Mn4+ red phosphor synthesized from aqueous HF/KMnO4 solution [J].J. Appl. Phys., 2009, 106(1):013516-1-6.
ARAI Y, TAKAHASHI T, ADACHI S. Photoluminescent properties of K2SnF6·H2O∶Mn4+ red phosphor [J].Opt. Mater., 2010, 32(9):1095-1101.
XU Y K, ADACHI S. Properties of Na2SiF6∶Mn4+ and Na2GeF6∶Mn4+ red phosphors synthesized by wet chemical etching [J].J. Appl. Phys., 2009, 105(1):013525-1-6.
ADACHI S, TAKAHASHI T. Direct synthesis and properties of K2SiF6∶Mn4+ phosphor by wet chemical etching of Si wafer [J].J. Appl. Phys., 2008, 104(2):023512-1-3.
LIN C C, MEIJERINK A, LIU R S. Critical red components for next-generation white LEDs [J].J. Phys. Chem. Lett., 2016, 7(3):495-503.
DENG T T, SONG E H, ZHOU Y Y, et al. Ultrafast green ion-exchange and short lifetime of efficient (NH4)3SiF7∶Mn4+ millimeter-sized single crystal for backlight displays [J].J. Alloys Compd., 2020, 847:156550-1-10.
XI L Q, PAN Y X, ZHU M M, et al. Abnormal site occupancy and high performance in warm WLEDs of a novel red phosphor, NaHF2∶Mn4+, synthesized at room temperature[J].Dalton Trans., 2017, 46(40):13835-13844.
WANG J Y, LANG T C, FANG S Q, et al. Discovery of an environmentally friendly water-soluble luminous material with interstitial site occupancy [J].ACS Susta. Chem. Eng., 2021, 9(7):2717-2726.
XU H P, HONG F, CHEN Z Y, et al. Green route, room-temperature synthesis and luminescence properties of a non-rare-earth doping Zn2+ based narrow-band red phosphor for WLEDs [J].J. Lumin., 2019, 216:116695.
ZHU Y W, CAO L Y, BRIK M G, et al. Facile synthesis, morphology and photoluminescence of a novel red fluoride nanophosphor K2NaAlF6∶Mn4+ [J].J. Mater. Chem. C, 2017, 5(26):6420-6426.
MING H, LIU L L, HE S A, et al. An ultra-high yield of spherical K2NaScF6∶Mn4+ red phosphor and its application in ultra-wide color gamut liquid crystal displays [J].J. Mater. Chem. C, 2019, 7(24):7237-7248.
KIM M, PARK W B, BANG B, et al. A novel Mn4+-activated red phosphor for use in light emitting diodes, K3SiF7∶Mn4+ [J].J. Am. Ceram. Soc., 2017, 100(3):1044-1050.
LIN H, HU T, HUANG Q M, et al. Non-rare-earth K2XF7∶Mn4+(X=Ta, Nb):a highly-efficient narrow-band red phosphor enabling the application in wide-color-gamut LCD [J].Laser Photonics Rev., 2017, 11(6):1700148-1-10.
FANG M H, YANG T H, LESNIEWSKI T, et al. Hydrogen-containing Na3HTi1-xMnxF8 narrow-band phosphor for light-emitting diodes [J].ACS Energy Lett., 2019, 4(2):527-533.
DONG X L, PAN Y X, JIA Y J, et al. Improved luminescence properties of a novel red dodec-fluoride phosphor Ba3Sc2F12∶Mn4+ with extraordinary thermal stability for WLED application [J].J. Mater. Chem. C, 2020, 8(18):6299-6305.
SIJBOM H F, VERSTRAETE R, JOOS J J, et al. K2SiF6∶Mn4+ as a red phosphor for displays and warm-white LEDs:a review of properties and perspectives [J].Opt. Mater. Express, 2017, 7(9):3332-3365.
HUANG L, ZHU Y W, ZHANG X J, et al. HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1-xF6∶xMn4+ for warm white light-emitting diodes [J].Chem. Mater., 2016, 28(5):1495-1502.
LIAO C X, CAO R P, MA Z J, et al. Synthesis of K2SiF6∶Mn4+ phosphor from SiO2 powders via redox reaction in HF/KMnO4 solution and their application in warm-white LED [J].J. Am. Ceram. Soc., 2013, 96(11):3552-3556.
WEI L L, LIN C C, FANG M H, et al. A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6∶Mn4+(M=Ge, Si) for white LED applications [J].J. Mater. Chem. C, 2015, 3(8):1655-1660.
WANG Z L, ZHOU Y Y, LIU Y, et al. Highly efficient red phosphor Cs2GeF6∶Mn4+ for warm white light-emitting diodes [J].RSC Adv., 2015, 5(100):82409-82414.
JIANG X Y, PAN Y X, HUANG S M, et al. Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6∶Mn4+ for LED applications [J].J. Mater. Chem. C, 2014, 2(13):2301-2306.
YOSHIMURA K, FUKUNAGA H, IZUMI M, et al. White LEDs using the sharp β-sialon∶Eu phosphor and Mn-doped red phosphor for wide-color gamut display applications [J].J. Soc. Inf. Display, 2016, 24(7):449-453.
SHI D X, LIANG Z B, ZHANG X, et al. Synthesis, structure and photoluminescence properties of a novel Rb2NaAlF6∶Mn4+ red phosphor for solid-state lighting [J].J. Lumin., 2020, 226:117491.
ZHOU Y Y, YU C K, SONG E H, et al. Three birds with one stone:K2SiF6∶Mn4+ single crystal phosphors for high-power and laser-driven lighting [J].Adv. Opt. Mater., 2020, 8(23):2000976.
WANG Y J, YU C K, ZHOU Y Y, et al. Mn4+ doped narrowband red phosphors with short fluorescence lifetime and high color stability for fast-response backlight display application [J].J. Alloys Compd., 2021, 855:157347.
TAKAHASHI T, ADACHI S. Mn4+-activated red photoluminescence in K2SiF6 phosphor [J].J. Electrochem. Soc., 2008, 155(12):E183-E188.
WU Q Y, LIAO C X, PAN J Q, et al. HF-free molten salt route for synthesis of highly efficient and water-resistant K2SiF6∶Mn4+ for warm white LED [J].J. Am. Ceram. Soc., 2020, 103(12):6901-6912.
STOLL C, BANDEMEHR J, KRAUS F, et al. HF-free synthesis of Li2SiF6∶Mn4+:a red-emitting phosphor [J].Inorg. Chem., 2019, 58(9):5518-5523.
LI H, LIU Y, TANG S, et al. Luminescence properties of Mn4+ with high 2Eg level energy in the polyfluoride Na3Li3Sc2F12 [J].Dalton Trans., 2020, 49(33):11613-11617.
MENG S Q, ZHOU Y Y, WAN W, et al. Facile in situ synthesis of zeolite-encapsulating Cs2SiF6∶Mn4+ for application in WLEDs [J].J. Mater. Chem. C, 2019, 7(5):1345-1352.
JANG M K, CHO Y S, HUH Y D. Preparation of red-emitting BaSiF6∶Mn4+ phosphors for three-band white LEDs [J].Opt. Mater., 2020, 101:109734-1-5.
LI Q Y, YU L, WU W P, et al. Novel BaGe1-xSixF6∶Mn4+ (0⇐x⇒1) red phosphors for warm white LEDs:hydrothermal synthesis and photoluminescence properties [J].J. Alloys Compd., 2021, 852:156995.
HONG F, PANG G, DIAO L J, et al. Local structure modulation of Mn4+-doped Na2Si1-yGeyF6 red phosphors for enhancement of emission intensity, moisture resistance, thermal stability and application in warm pc-WLEDs [J].Dalton Trans., 2020, 49(39):13805-13817.
DONG Q Z, GUO C J, HE L, et al. Improving the moisture resistance and luminescent properties of K2TiF6∶Mn4+ by coating with CaF2 [J].Mater. Res. Bull., 2019, 115:98-104.
LIU Y M, WANG T M, TAN Z R, et al. Novel emission bands of Na2TiF6∶Mn4+ phosphors induced by the cation exchange method [J].Ceram. Int., 2019, 45(5):6243-6249.
WANG L Y, SONG E H, ZHOU Y Y, et al. An efficient and stable narrow band Mn4+-activated fluorotitanate red phosphor Rb2TiF6∶Mn4+ for warm white LED applications [J].J. Mater. Chem. C, 2018, 6(32):8670-8678.
FANG S Q, HAN T, LANG T C, et al. Synthesis of a novel red phosphor K2 xBa1-xTiF6∶Mn4+ and its enhanced luminescence performance, thermal stability and waterproofness [J].J. Alloys Compd., 2019, 808:151697.
HONG F, YANG L, XU H P, et al. A red-emitting Mn4+ activated phosphor with controlled morphology and two-dimensional luminescence nanofiber film:synthesis and application for high-performance warm white light-emitting diodes (WLEDs) [J].J. Alloys Compd., 2019, 808:151551.
LANG T C, HAN T, FANG S Q, et al. Improved phase stability of the metastable K2GeF6∶Mn4+ phosphors with high thermal stability and water-proof property by cation substitution [J].Chem. Eng. J., 2020, 380:122429.
HONG F, XU H P, PANG G, et al. Moisture resistance, luminescence enhancement, energy transfer and tunable color of novel core-shell structure BaGeF6∶Mn4+ phosphor [J].Chem. Eng. J., 2020, 390:124579.
JIA Y J, PAN Y X, ZHU J W, et al. In situ organic solvent-free synthesis of a novel red emitting Mn4+ doped KRbGeF6 phosphor at the room temperature [J].Dalton Trans., 2020, 49(38):13226-13232.
JIANG C Y, PENG M Y, SRIVASTAVA A M, et al. Mn4+-doped heterodialkaline fluorogermanate red phosphor with high quantum yield and spectral luminous efficacy for warm-white-light-emitting device application [J].Inorg. Chem., 2018, 57(23):14705-14714.
ZHANG L, XI L Q, PAN Y X, et al. Synthesis and improved photoluminescence of hexagonal crystals of Li2ZrF6∶Mn4+ for warm WLED application [J].Dalton Trans., 2018, 47(46):16516-16523.
HONG F, XU H P, YANG L, et al. Mn4+ nonequivalent-doped Al3+-based cryolite high-performance warm WLED red phosphors [J].New J. Chem., 2019, 43(37):14859-14871.
LIU Y M, WANG T M, ZHANG X Z, et al. Synthesis, luminescence properties and nephelauxetic effect of Nano stick phosphors K3AlF6∶Mn4+ for warm white LED [J].J. Mater. Sci.: Mater. Electron., 2019, 30(2):1870-1877.
DENG T T, SONG E H, ZHOU Y Y, et al. Implementation of high color quality, high luminous warm WLED using efficient and thermally stable Rb3AlF6∶Mn4+ as red color converter [J].J. Alloys Compd., 2019, 795:453-461.
MING H, ZHANG J F, LIU L L, et al. Luminescent properties of a Cs3AlF6∶Mn4+ red phosphor for warm white light-emitting diodes [J].ECS J. Solid State Sci. Technol., 2018, 7(9):R149-R155.
HUMAYOUN U B, KWON S B, SAMI S K, et al. (NH4)3AlF6∶Mn4+ a novel red phosphor-Facile synthesis, structure and luminescence characteristics [J].J. Alloys Compd., 2019, 776:594-598.
HONG F, XU H P, PANG G, et al. Optical characteristics, morphology evolution and thermal stability of novel red-emitting Mn4+-activated K2LiAl1-yGayF6 solid solution phosphors for high-performance warm WLED [J].J. Alloys Compd., 2020, 824:153818.
LIANG Z B, YANG Z F, XIE X L, et al. Electronic and optical properties of a novel fluoroaluminate red phosphor Cs2NaAl3F12∶Mn4+ with high color purity for white light-emitting diodes [J].Dalton Trans., 2019, 48(33):12459-12465.
LI D, PAN Y X, LIN Y, et al. Comparative investigation on solvent-related morphology and luminescence properties of a novel red phosphor NaRbSnF6∶Mn4+ for WLEDs application [J].J. Lumin., 2020, 228:117577.
DENG T T, WEI J R, GUO R F, et al. Investigation into chemical function in a Mn4+-activated Li-phase cryolite synthesis for green synthetic design [J].J. Alloys Compd., 2020, 819:153005-1-10.
ZHU M M, PAN Y X, WU M M, et al. Synthesis and improved photoluminescence of a novel red phosphor LiSrGaF6∶Mn4+ for applications in warm WLEDs [J].Dalton Trans., 2018, 47(37):12944-12950.
XU H P, HONG F, PANG G, et al. Co-precipitation synthesis, luminescent properties and application in warm WLEDs of Na3GaF6∶Mn4+ red phosphor [J].J. Lumin., 2020, 219:116960.
SHI D X, XIE X L, PU H Q, et al. Communication-luminescence properties of a novel l Rb2KGaF6∶Mn4+ red-emitting phosphor for solid-state lighting [J].ECS J. Solid State Sci. Technol., 2020, 9(12):126001.
MING H, LIU S F, LIU L L, et al. Highly regular, uniform K3ScF6∶Mn4+ phosphors:facile synthesis, microstructures, photoluminescence properties, and application in light-emitting diode devices [J].ACS Appl. Mater. Interfaces, 2018, 10(23):19783-19795.
WANG Y J, ZHOU Y Y, SONG E H. Ammonium salt conversion towards Mn4+ doped (NH4)2NaScF6 narrow-band red-emitting phosphor [J].J. Alloys Compd., 2019, 811:151945.
ZHU Y W, HUANG L, BRIK M G, et al. Anomalous photoluminescence from a K2LiInF6∶Mn4+ phosphor [J].J. Mater. Chem. C, 2020, 8(24):8085-8090.
MING H, ZHANG J F, LIU S F, et al. A green synthetic route to K2NbF7∶Mn4+ red phosphor for the application in warm white LED devices [J].Opt. Mater., 2018, 86:352-359.
JIA Y J, PAN Y X, LI Y Q, et al. Improved moisture-resistant and luminescence properties of a red phosphor based on dodec-fluoride K3RbGe2F12∶Mn4+ through surface modification [J].Inorg. Chem., 2021, 60(1):231-238.
KUMADA N, YANAGIDA S, TAKEI T, et al. Hydrothermal synthesis and crystal structure of new red phosphors, KNaMF7∶Mn4+ (M:Nb, Ta) [J].Mater. Res. Bull., 2019, 115:170-175.
HE S A, XU F F, HAN T T, et al. A Mn4+-doped oxyfluoride phosphor with remarkable negative thermal quenching and high color stability for warm WLEDs [J].Chem. Eng. J., 2020, 392:123657-1-10.
HU T, LIN H, CHENG Y, et al. A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn4+-activated oxyfluoride Na2WO2F4 [J].J. Mater. Chem. C, 2017, 5(40):10524-10532.
CAI P Q, QIN L, CHEN C L, et al. Luminescence, energy transfer and optical thermometry of a novel narrow red emitting phosphor:Cs2WO2F4∶Mn4+ [J].Dalton Trans, 2017, 46(41):14331-14340.
LIANG Z B, YANG Z F, TANG H J, et al. Synthesis, luminescence properties of a novel oxyfluoride red phosphor BaTiOF4∶Mn4+ for LED backlighting [J].Opt. Mater., 2019, 90:89-94.
MING H, ZHANG J F, LIU L L, et al. A novel Cs2NbOF5∶Mn4+ oxyfluoride red phosphor for light-emitting diode devices [J].Dalton Trans., 2018, 47(45):16048-16056.
DONG X L, PAN Y X, LI D, et al. A novel red phosphor of Mn4+ ion-doped oxyfluoroniobate BaNbOF5 for warm WLED applications [J].CrystEngComm, 2018, 20(37):5641-5646.
ZHANG Y T, QIAO X, WAN J, et al. Facile synthesis of monodisperse YAG∶Ce3+ microspheres with high quantum yield via an epoxide-driven sol-gel route [J].J. Mater. Chem. C, 2017, 5(35):8952-8957.
WAN J, ZHANG Y T, WANG Y, et al. Facile synthesis of monodisperse SrAl2O4∶Eu2+ cage-like microspheres with an excellent luminescence quantum yield [J].J. Mater. Chem. C, 2018, 6(13):3346-3351.
KANG H G, PARK J K, KIM C H, et al. Luminescence properties of MAl12O19∶Mn4+ (M=Ca, Sr, Ba) for UV LEDs[J].J. Ceram. Soc. Jpn., 2009, 117(1365):647-649.
ZHENG Y J, ZHANG H M, ZHANG H R, et al. Co-substitution in Ca1-xYxA112-xMgxO19 phosphors:local structure evolution, photoluminescence tuning and application for plant growth LEDs [J].J. Mater. Chem. C, 2018, 6(15):4217-4224.
MURATA T, TANOUE T, IWASAKI M, et al. Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED [J].J. Lumin., 2005, 114(3-4):207-212.
LIU Z, YUWEN M H, LIU J Q, et al. Electrospinning, optical properties and white LED applications of one-dimensional CaAl12O19∶Mn4+ nanofiber phosphors [J].Ceram. Int., 2017, 43(7):5674-5679.
CHEN Y B, WU K L, HE J, et al. A bright and moisture-resistant red-emitting Lu3Al5O12∶Mn4+, Mg2+ garnet phosphor for high-quality phosphor-converted white LEDs [J].J. Mater. Chem. C, 2017, 5(34):8828-8835.
SUN Q, WANG S Y, DEVAKUMAR B, et al. CaYAlO4∶Mn4+, Mg2+:an efficient far-red-emitting phosphor for indoor plant growth LEDs [J].J. Alloys Compd., 2019, 785:1198-1205.
HU J X, HUANG T H, ZHANG Y P, et al. Enhanced deep-red emission from Mn4+/Mg2+ co-doped CaGdAlO4 phosphors for plant cultivation [J].Dalton Trans., 2019, 48(7):2455-2466.
CHEN D Q, ZHOU Y, XU W, et al. Enhanced luminescence of Mn4+:Y3Al5O12 red phosphor via impurity doping [J].J. Mater. Chem. C, 2016, 4(8):1704-1712.
ZHU Y J, QIU Z X, AI B Y, et al. Significant improved quantum yields of CaAl12O19∶Mn4+ red phosphor by co-doping Bi3+ and B3+ ions and dual applications for plant cultivations [J].J. Lumin., 2018, 201:314-320.
ZHAO Y, SHI L, HAN Y J, et al. Luminescent properties of Zn2+-doped CaAl12O19∶Mn4+ deep-red phosphor for indoor plant cultivation [J].Ceram. Int., 2019, 45(7):8265-8270.
LI Y N, XIAO Z H, XU L Z, et al. Fluorescence enhancement mechanism in phosphor CaAl12O19:Mn4+ modified with alkali-chloride [J].Micro Nano Lett., 2013, 8(5):254-257.
XU Y D, ZHANG Y, WANG L, et al. Red emission enhancement for CaAl12O19:Cr3+ and CaAl12O19∶Mn4+ phosphors [J].J. Mater. Sci:Mater. Electron., 2017, 28(16):12032-12038.
SHU W, JIANG L L, XIAO S G, et al. GeO2 dopant induced enhancement of red emission in CaAl12O19∶Mn4+ phosphor [J].Mater. Sci. Eng. B, 2012, 177(2):274-277.
KONG L, LIU Y Y, DONG L P, et al. Enhanced red luminescence in CaAl12O19∶Mn4+ via doping Ga3+ for plant growth lighting [J].Dalton Trans., 2020, 49(6):1947-1954.
FANG S Q, LANG T C, HAN T, et al. Zero-thermal-quenching of Mn4+ far-red-emitting in LaAlO3 perovskite phosphor via energy compensation of electrons’ traps [J].Chem. Eng. J., 2020, 389:124297.
ZHANG Y L, HUANG Y D, LI M H, et al. Tuning the luminescence properties of Mn4+-activated CaYAlO4 phosphor by co-doping cations for indoor plant cultivation [J].J. Am. Ceram. Soc., 2020, 103(8):4373-4383.
LI X, LI W H, HOU B F, et al. Investigation of enhanced far-red emitting phosphor GdAlO3∶Mn4+ by impurity doping for indoor plant growth LEDs [J].Phys. B: Phys. Condens. Matter, 2020, 581:411953.
HU J X, ZHAO Y, CHEN B J, et al. An investigation of Mn4+ doped BeAl2O4 single crystal for WLEDs application [J].Ceram. Int., 2018, 44(16):20220-20226.
JI H P, HOU X H, MOLOKEEV M S, et al. Ultrabroadband red luminescence of Mn4+ in MgAl2O4 peaking at 651 nm [J].Dalton Trans., 2020, 49(17):5711-5721.
TRUNG D Q, TU N, QUANG N V, et al. Non-rare-earth dual green and red-emitting Mn-doped ZnAl2O4 phosphors for potential application in plan-growth LEDs [J].J. Alloys Compd., 2020, 845:156326.
TIAN C, LIN H, ZHANG D W, et al. Mn4+ activated Al2O3 red-emitting ceramic phosphor with excellent thermal conductivity [J].Opt. Express, 2019, 27(22):32666-32678.
SUN L L, DEVAKUMAR B, LIANG J, et al. Simultaneously enhanced far-red luminescence and thermal stability in Ca3Al4ZnO10∶Mn4+ phosphor via Mg2+ doping for plant growth lighting [J].J. Alloys Compd., 2019, 785:312-319.
SASAKI T, FUKUSHIMA J, HAYASHI Y, et al. Synthesis and photoluminescence properties of a novel Sr2Al6O11∶Mn4+ red phosphor prepared with a B2O3 flux [J].J. Lumin., 2018, 194:446-451.
GU S M, XIA M, ZHOU C, et al. Red shift properties, crystal field theory and nephelauxetic effect on Mn4+-doped SrMgAl10-yGayO17 red phosphor for plant growth LED light [J].Chem. Eng. J., 2020, 396:125208.
CAO R, AN C S, TIAN L H. Photoluminescence properties of novel deep red-emission phosphor BaZn1.06Al9.94O17∶Mn4+ [J].J. Lumin., 2019, 210:66-69.
WANG B, LIN H, HUANG F, et al. Non-rare-earth BaMgAl10-2xO17∶xMn4+, xMg2+:a narrow-band red phosphor for use as a high-power warm w-LED [J].Chem. Mater., 2016, 28(10):3515-3524.
ZHONG Y, ZHOU Y, ZHOU C, et al. Two targets with one strategy:insights into the role of aluminum atoms on the luminescence properties and thermal stability in Mn4+-doped calcium aluminozincate phosphor [J].J. Alloys Compd., 2020, 849:156567.
WU Y B, ZHUANG Y X, XIE R J, et al. Novel Mn4+ doped red phosphors composed of MgAl2O4 and CaAl12O19 phases for light-emitting diodes [J].Dalton Trans., 2020, 49(11):3606-3614.
ZHU Y T, LI C X, DENG D G, et al. A high-sensitivity dual-mode optical thermometry based on one-step synthesis of Mn2+:BaAl12O19-Mn4+:SrAl12O19 solid solution phosphors [J].J. Alloys Compd., 2021, 853:157262.
XIONG F B, LIN L X, LIN H F, et al. Synthesis and photoluminescence of Mn4+ in M4Al14O25(M=Sr or Mg) compounds as red-light phosphors for white LED [J].Opt. Laser Technol., 2019, 117:299-303.
WANG B, LIN H, XU J, et al. CaMg2Al16O27∶Mn4+-based red phosphor:a potential color converter for high-powered warm W-LED [J].ACS Appl. Mater. Interfaces, 2014, 6(24):22905-22913.
WU Y B, ZHUANG Y X, LV Y, et al. A high-performance non-rare-earth deep-red-emitting Ca14-xSrxZn6Al10O35∶Mn4+ phosphor for high-power plant growth LEDs [J].J. Alloys Compd., 2019, 781:702-709.
XIA Z G, LIU Q L. Progress in discovery and structural design of color conversion phosphors for LEDs [J].Prog. Mater. Sci., 2016, 84:59-117.
DONG L P, ZHANG L, JIA Y C, et al. Enhancing luminescence and controlling the Mn valence state of Gd3Ga5-x-δAlx-y+δO12∶yMn phosphors by the design of the garnet structure [J].ACS Appl. Mater. Interfaces, 2020, 12(6):7334-7344.
ZHONG Y, GAI S J, XIA M, et al. Enhancing quantum efficiency and tuning photoluminescence properties in far-red-emitting phosphor Ca14Ga10Zn6O35∶Mn4+ based on chemical unit engineering [J].Chem. Eng. J., 2019, 374:381-391.
SENDEN T, VAN DIJK-MOES R J A, MEIJERINK A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors [J].Light: Sci. Appl., 2018, 7(1):8-1-13.
BLASSE G. Energy transfer in oxidic phosphors [J].Phys. Lett. A, 1968, 28(6):444-445.
HUANG D Y, DANG P P, LIAN H Z, et al. Luminescence and energy-transfer properties in Bi3+/Mn4+-codoped Ba2GdNbO6 double-perovskite phosphors for white-light-emitting diodes [J].Inorg. Chem., 2019, 58(22):15507-15519.
WEI Y, YANG H, GAO Z Y, et al. Strategies for designing antithermal-quenching red phosphors [J].Adv. Sci., 2020, 7(8):1903060-1-9.
NAIR G B, SWART H C, DHOBLE S J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs):phosphor synthesis, device fabrication and characterization [J].Prog. Mater. Sci., 2020, 109:100622-1-36.
DORENBOS P. Charge transfer bands in optical materials and related defect level location [J].Opt. Mater., 2017, 69:8-22.
GAI S J, ZHU H F, GAO P X, et al. Structure analysis, tuning photoluminescence and enhancing thermal stability on Mn4+-doped La2-xYxMgTiO6 red phosphor for agricultural lighting [J].Ceram. Int., 2020, 46(12):20173-20182.
HUANG D C, ZHU H M, DENG Z H, et al. Moisture-resistant Mn4+-doped core-shell-structured fluoride red phosphor exhibiting high luminous efficacy for warm white light-emitting diodes [J].Angew. Chem. Int. Ed., 2019, 58(12):3843-3847.
HUANG L, LIU Y, YU J B, et al. Highly stable K2SiF6∶Mn4+@K2SiF6 composite phosphor with narrow red emission for white LEDs [J].ACS Appl. Mater. Interfaces, 2018, 10(21):18082-18092.
YU H J, WANG B C, BU X Y, et al. A facile in situ surface-coating passivation strategy for improving the moisture resistance of Mn4+-activated fluoride red phosphor [J].Ceram. Int., 2020, 46(11):18281-18286.
0
Views
1144
下载量
9
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution