1.中国科学院 上海硅酸盐研究所,上海 200050
2.中国科学院大学 材料科学与光电技术学院,北京 100049
3.厦门大学 材料学院,福建 厦门 361005
扫 描 看 全 文
Xing-lin PENG, Shu-xing LI, Ao-chen DU, et al. Hot Isostatic Pressing Post-treatment and Performance of Red-emitting AlN-CaAlSiN3∶Eu Composite Phosphor Ceramics. [J]. Chinese Journal of Luminescence 42(10):1502-1509(2021)
Xing-lin PENG, Shu-xing LI, Ao-chen DU, et al. Hot Isostatic Pressing Post-treatment and Performance of Red-emitting AlN-CaAlSiN3∶Eu Composite Phosphor Ceramics. [J]. Chinese Journal of Luminescence 42(10):1502-1509(2021) DOI: 10.37188/CJL.20210146.
目前报道的高热导AlN-CaAlSiN,3,∶Eu红色复相荧光陶瓷由于放电等离子体烧结(SPS)产生的碳污染问题导致发光性能难以提高。本研究工作提出了一种减少氮化物荧光陶瓷碳污染的有效方法,即采用热等静压(HIP)在N,2,气氛中处理SPS烧结的样品。实验表明,经过HIP处理后样品的发光强度和量子效率最高均提高了一倍左右,光通量提高了51%,发光饱和阈值提高了15%以上。其中,性能最佳的样品在入射激光功率高达15 W时依然保持完好且未发生发光饱和,光通量高达197 lm。本研究工作利用HIP处理制备出具有优异发光性能和极高发光饱和阈值的红色荧光陶瓷,促进了大功率激光照明领域的发展。
The previously reported highly thermal conductive red-emitting AlN-CaAlSiN,3,∶Eu composite phosphor ceramic is difficult to improve the luminescence performance due to the carbon contamination problem caused by spark plasma sintering(SPS). In this paper, hot isostatic pressing(HIP) post-treatment is used to prepare red-emitting phosphor ceramics with excellent luminescence performance and extremely high saturation threshold, which promotes the development of high-power laser lighting. The SPS sintered samples were treated by HIP in N,2, atmosphere. The experimental results show that the luminescence intensity and quantum efficiency of the samples are doubled after HIP post-treatment, the luminous flux is increased by 51%, and the saturation threshold is increased by more than 15%. The sample with the best performance remains intact without luminance saturation when the incident laser power is as high as 15 W, and the luminous flux is up to 197 lm.
激光照明氮化物荧光陶瓷热等静压烧结发光饱和
laser lightingnitridesphosphor ceramicshot isostatic pressingluminance saturation
JRWIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J].Laser Photon. Rev., 2013, 7(6): 963-993.
LI S X, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting[J].Laser Photon. Rev., 2018, 12(12): 1800173-1-29.
KIM Y H, VISWANATH N S M, UNITHRATTIL S, et al. Review-phosphor plates for high-power LED applications: challenges and opportunities toward perfect lighting[J].ECS J. Solid State Sci. Technol., 2018, 7(1): R3134-R3147.
彭星淋, 李淑星, 刘泽华, 等. 大功率固态照明用荧光陶瓷研究进展[J].无机材料学报, 2021, 36(8): 807-819.
PENG X L, LI S X, LIU Z H, et al. Phosphor ceramics for high-power solid-state lighting[J].J. Inorg. Mater., 2021, 36(8): 807-819. (in Chinese)
胡盼, 丁慧, 刘永福, 等. YAG∶Ce3+在激光照明应用中的研究进展[J].发光学报, 2020, 41(12): 1504-1528.
HU P, DING H, LIU Y F, et al. Recent progress of YAG∶Ce3+ for white laser diode lighting application[J].Chin. J. Lumin., 2020, 41(12): 1504-1528. (in Chinese)
李江, 李万圆, 刘欣, 等. 固态照明/显示用荧光陶瓷研究进展[J].发光学报, 2021, 42(5): 580-604.
LI J, LI W Y, LIU X, et al. Research progress on phosphor ceramics for solid-state lighting/display[J].Chin. J. Lumin., 2021, 42(5): 580-604. (in Chinese)
YAO Q, HU P, SUN P, et al. YAG∶Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J].Adv. Mater., 2020, 32(19): 1907888-1-7.
ZHENG P, LI S X, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light[J].Laser Photon. Rev., 2019, 13(10): 1900147-1-10.
ZHU Q Q, WANG X J, WANG L, et al. β-Sialon∶Eu phosphor-in-glass: a robust green color converter for high power blue laser lighting[J].J. Mater. Chem. C, 2015, 3(41): 10761-10766.
YU J B, SI S C, LIU Y, et al. High-power laser-driven phosphor-in-glass for excellently high conversion efficiency white light generation for special illumination or display backlighting[J].J. Mater. Chem. C, 2018, 6(30): 8212-8218.
ZHENG P, LI S X, WANG L, et al. Unique color converter architecture enabling phosphor-in-glass(PiG) films suitable for high-power and high-luminance laser-driven white lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(17): 14930-14940.
YOU S H, LI S X, ZHENG P, et al. A thermally robust La3Si6N11∶Ce-in-glass film for high-brightness blue-laser-driven solid state lighting[J].Laser Photon. Rev., 2019, 13(2): 1800216-1-10.
XU J, THORSETH A, XU C, et al. Investigation of laser-induced luminescence saturation in a single-crystal YAG∶Ce phosphor: towards unique architecture, high saturation threshold, and high-brightness laser-driven white lighting[J].J. Lumin., 2019, 212: 279-285.
CANTORE M, PFAFF N, FARRELL R M, et al. High luminous flux from single crystal phosphor-converted laser-based white lighting system[J].Opt. Express, 2016, 24(2): A215-A221.
SUN Y, ZHOU K, FENG M X, et al. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si[J].Light Sci. Appl., 2018, 7(1): 13-1-7.
YANG J, ZHAO D G, JIANG D S, et al. Suppression the formation of V-pits in InGaN/GaN multi-quantum well growth and its effect on the performance of GaN based laser diodes[J].J. Alloys Compd., 2020, 822: 153571.
LIU X, QIAN X L, HU Z W, et al. Al2O3-Ce∶Gd YAG composite ceramic phosphors for high-power white light-emitting-diode applications[J].J. Eur. Ceram. Soc., 2019, 39(6): 2149-2154.
LIU S, SUN P, LIU Y F, et al. Warm white light with a high color-rendering index from a single Gd3Al4GaO12∶Ce3+ transparent ceramic for high-power LEDs and LDs[J].ACS Appl. Mater. Interfaces, 2019, 11(2): 2130-2139.
LING J R, ZHOU Y F, XU W T, et al. Red-emitting YAG∶Ce, Mn transparent ceramics for warm WLEDs application[J].J. Adv. Ceram., 2020, 9(1): 45-54.
WANG J C, TANG X Y, ZHENG P, et al. Thermally self-managing YAG∶Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration[J].J. Mater. Chem. C, 2019, 7(13): 3901-3908.
XU Y R, LI S X, ZHENG P, et al. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation[J].J. Mater. Chem. C, 2019, 7(37): 11449-11456.
PENG X L, LI S X, LIU Z H, et al. Highly thermal conductive red-emitting AlN-CaAlSiN3∶Eu2+ composite phosphor ceramics for high-power laser-driven lighting[J].J. Eur. Ceram. Soc., 2021, 41(11): 5650-5657.
ZHANG Y L, HU S, WANG Z J, et al. Pore-existing Lu3Al5O12∶Ce ceramic phosphor: an efficient green color converter for laser light source[J].J. Lumin., 2018, 197: 331-334.
LI S X, ZHU Q Q, WANG L, et al. CaAlSiN3∶Eu2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting[J].J. Mater. Chm. C, 2016, 4(35): 8197-8205.
MORITA K, KIM B N, YOSHIDA H, et al. Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering(SPS) processing: Ⅱ-effect of SPS and loading temperatures[J].J. Eur. Ceram. Soc., 2018, 38(6): 2596-2604.
MORITA K, KIM B N, YOSHIDA H, et al. Distribution of carbon contamination in MgAl2O4 spinel occurring during spark-plasma-sintering(SPS) processing: Ⅰ-effect of heating rate and post-annealing[J].J. Eur. Ceram. Soc., 2018, 38(6): 2588-2595.
ZHU Q Q, YANG P F, WANG Z Y, et al. Additive-free Y2O3∶Eu3+ red-emitting transparent ceramic with superior thermal conductivity for high-power UV LEDs and UV LDs[J].J. Eur. Ceram. Soc., 2020, 40(6): 2426-2431.
LI S X, TANG D M, TIAN Z F, et al. New insights into the microstructure of translucent CaAlSiN3∶Eu2+ phosphor ceramics for solid-state laser lighting[J].J. Mater. Chem. C, 2017, 5(5): 1042-1051.
0
Views
137
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution