浏览全部资源
扫码关注微信
1.中国科学院 上海硅酸盐研究所,上海 200050
2.中国科学院大学 材料科学与光电技术学院,北京 100049
3.厦门大学 材料学院,福建 厦门 361005
Published:01 October 2021,
Received:22 April 2021,
Revised:11 May 2021,
移动端阅览
XING-LIN PENG, SHU-XING LI, AO-CHEN DU, et al. Hot Isostatic Pressing Post-treatment and Performance of Red-emitting AlN-CaAlSiN3∶Eu Composite Phosphor Ceramics. [J]. Chinese journal of luminescence, 2021, 42(10): 1502-1509.
XING-LIN PENG, SHU-XING LI, AO-CHEN DU, et al. Hot Isostatic Pressing Post-treatment and Performance of Red-emitting AlN-CaAlSiN3∶Eu Composite Phosphor Ceramics. [J]. Chinese journal of luminescence, 2021, 42(10): 1502-1509. DOI: 10.37188/CJL.20210146.
目前报道的高热导AlN-CaAlSiN
3
∶Eu红色复相荧光陶瓷由于放电等离子体烧结(SPS)产生的碳污染问题导致发光性能难以提高。本研究工作提出了一种减少氮化物荧光陶瓷碳污染的有效方法,即采用热等静压(HIP)在N
2
气氛中处理SPS烧结的样品。实验表明,经过HIP处理后样品的发光强度和量子效率最高均提高了一倍左右,光通量提高了51%,发光饱和阈值提高了15%以上。其中,性能最佳的样品在入射激光功率高达15 W时依然保持完好且未发生发光饱和,光通量高达197 lm。本研究工作利用HIP处理制备出具有优异发光性能和极高发光饱和阈值的红色荧光陶瓷,促进了大功率激光照明领域的发展。
The previously reported highly thermal conductive red-emitting AlN-CaAlSiN
3
∶Eu composite phosphor ceramic is difficult to improve the luminescence performance due to the carbon contamination problem caused by spark plasma sintering(SPS). In this paper
hot isostatic pressing(HIP) post-treatment is used to prepare red-emitting phosphor ceramics with excellent luminescence performance and extremely high saturation threshold
which promotes the development of high-power laser lighting. The SPS sintered samples were treated by HIP in N
2
atmosphere. The experimental results show that the luminescence intensity and quantum efficiency of the samples are doubled after HIP post-treatment
the luminous flux is increased by 51%
and the saturation threshold is increased by more than 15%. The sample with the best performance remains intact without luminance saturation when the incident laser power is as high as 15 W
and the luminous flux is up to 197 lm.
激光照明氮化物荧光陶瓷热等静压烧结发光饱和
laser lightingnitridesphosphor ceramicshot isostatic pressingluminance saturation
JRWIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J].Laser Photon. Rev., 2013, 7(6): 963-993.
LI S X, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting[J].Laser Photon. Rev., 2018, 12(12): 1800173-1-29.
KIM Y H, VISWANATH N S M, UNITHRATTIL S, et al. Review-phosphor plates for high-power LED applications: challenges and opportunities toward perfect lighting[J].ECS J. Solid State Sci. Technol., 2018, 7(1): R3134-R3147.
彭星淋, 李淑星, 刘泽华, 等. 大功率固态照明用荧光陶瓷研究进展[J].无机材料学报, 2021, 36(8): 807-819.
PENG X L, LI S X, LIU Z H, et al. Phosphor ceramics for high-power solid-state lighting[J].J. Inorg. Mater., 2021, 36(8): 807-819. (in Chinese)
胡盼, 丁慧, 刘永福, 等. YAG∶Ce3+在激光照明应用中的研究进展[J].发光学报, 2020, 41(12): 1504-1528.
HU P, DING H, LIU Y F, et al. Recent progress of YAG∶Ce3+ for white laser diode lighting application[J].Chin. J. Lumin., 2020, 41(12): 1504-1528. (in Chinese)
李江, 李万圆, 刘欣, 等. 固态照明/显示用荧光陶瓷研究进展[J].发光学报, 2021, 42(5): 580-604.
LI J, LI W Y, LIU X, et al. Research progress on phosphor ceramics for solid-state lighting/display[J].Chin. J. Lumin., 2021, 42(5): 580-604. (in Chinese)
YAO Q, HU P, SUN P, et al. YAG∶Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J].Adv. Mater., 2020, 32(19): 1907888-1-7.
ZHENG P, LI S X, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light[J].Laser Photon. Rev., 2019, 13(10): 1900147-1-10.
ZHU Q Q, WANG X J, WANG L, et al. β-Sialon∶Eu phosphor-in-glass: a robust green color converter for high power blue laser lighting[J].J. Mater. Chem. C, 2015, 3(41): 10761-10766.
YU J B, SI S C, LIU Y, et al. High-power laser-driven phosphor-in-glass for excellently high conversion efficiency white light generation for special illumination or display backlighting[J].J. Mater. Chem. C, 2018, 6(30): 8212-8218.
ZHENG P, LI S X, WANG L, et al. Unique color converter architecture enabling phosphor-in-glass(PiG) films suitable for high-power and high-luminance laser-driven white lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(17): 14930-14940.
YOU S H, LI S X, ZHENG P, et al. A thermally robust La3Si6N11∶Ce-in-glass film for high-brightness blue-laser-driven solid state lighting[J].Laser Photon. Rev., 2019, 13(2): 1800216-1-10.
XU J, THORSETH A, XU C, et al. Investigation of laser-induced luminescence saturation in a single-crystal YAG∶Ce phosphor: towards unique architecture, high saturation threshold, and high-brightness laser-driven white lighting[J].J. Lumin., 2019, 212: 279-285.
CANTORE M, PFAFF N, FARRELL R M, et al. High luminous flux from single crystal phosphor-converted laser-based white lighting system[J].Opt. Express, 2016, 24(2): A215-A221.
SUN Y, ZHOU K, FENG M X, et al. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si[J].Light Sci. Appl., 2018, 7(1): 13-1-7.
YANG J, ZHAO D G, JIANG D S, et al. Suppression the formation of V-pits in InGaN/GaN multi-quantum well growth and its effect on the performance of GaN based laser diodes[J].J. Alloys Compd., 2020, 822: 153571.
LIU X, QIAN X L, HU Z W, et al. Al2O3-Ce∶Gd YAG composite ceramic phosphors for high-power white light-emitting-diode applications[J].J. Eur. Ceram. Soc., 2019, 39(6): 2149-2154.
LIU S, SUN P, LIU Y F, et al. Warm white light with a high color-rendering index from a single Gd3Al4GaO12∶Ce3+ transparent ceramic for high-power LEDs and LDs[J].ACS Appl. Mater. Interfaces, 2019, 11(2): 2130-2139.
LING J R, ZHOU Y F, XU W T, et al. Red-emitting YAG∶Ce, Mn transparent ceramics for warm WLEDs application[J].J. Adv. Ceram., 2020, 9(1): 45-54.
WANG J C, TANG X Y, ZHENG P, et al. Thermally self-managing YAG∶Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration[J].J. Mater. Chem. C, 2019, 7(13): 3901-3908.
XU Y R, LI S X, ZHENG P, et al. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation[J].J. Mater. Chem. C, 2019, 7(37): 11449-11456.
PENG X L, LI S X, LIU Z H, et al. Highly thermal conductive red-emitting AlN-CaAlSiN3∶Eu2+ composite phosphor ceramics for high-power laser-driven lighting[J].J. Eur. Ceram. Soc., 2021, 41(11): 5650-5657.
ZHANG Y L, HU S, WANG Z J, et al. Pore-existing Lu3Al5O12∶Ce ceramic phosphor: an efficient green color converter for laser light source[J].J. Lumin., 2018, 197: 331-334.
LI S X, ZHU Q Q, WANG L, et al. CaAlSiN3∶Eu2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting[J].J. Mater. Chm. C, 2016, 4(35): 8197-8205.
MORITA K, KIM B N, YOSHIDA H, et al. Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering(SPS) processing: Ⅱ-effect of SPS and loading temperatures[J].J. Eur. Ceram. Soc., 2018, 38(6): 2596-2604.
MORITA K, KIM B N, YOSHIDA H, et al. Distribution of carbon contamination in MgAl2O4 spinel occurring during spark-plasma-sintering(SPS) processing: Ⅰ-effect of heating rate and post-annealing[J].J. Eur. Ceram. Soc., 2018, 38(6): 2588-2595.
ZHU Q Q, YANG P F, WANG Z Y, et al. Additive-free Y2O3∶Eu3+ red-emitting transparent ceramic with superior thermal conductivity for high-power UV LEDs and UV LDs[J].J. Eur. Ceram. Soc., 2020, 40(6): 2426-2431.
LI S X, TANG D M, TIAN Z F, et al. New insights into the microstructure of translucent CaAlSiN3∶Eu2+ phosphor ceramics for solid-state laser lighting[J].J. Mater. Chem. C, 2017, 5(5): 1042-1051.
0
Views
265
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution