浏览全部资源
扫码关注微信
中南大学 化学化工学院,湖南 长沙 410083
Published:01 August 2021,
Received:20 April 2021,
Revised:28 April 2021,
移动端阅览
RUI-TING GUO, LIN LI, YING-ER XIANG, et al. Applications of Carbon Dots in Advanced Sodium Ion Batteries. [J]. Chinese journal of luminescence, 2021, 42(8): 1182-1195.
RUI-TING GUO, LIN LI, YING-ER XIANG, et al. Applications of Carbon Dots in Advanced Sodium Ion Batteries. [J]. Chinese journal of luminescence, 2021, 42(8): 1182-1195. DOI: 10.37188/CJL.20210140.
碳点是一类新兴的碳材料,由于其超小的尺寸、丰富的可控表面官能团、良好的生物相容性、无毒性和光致发光等特点,自发现以来得到了广泛研究,逐渐被应用于各种领域。近年来,碳点在新一代电池中的应用受到了广泛关注,针对碳点在钠离子电池电极材料方面的应用优势和存在的挑战,本文以碳点衍生碳材料、碳点对电极材料的表面修饰和形貌调控为脉络,系统总结了碳点在钠离子电池电极材料方面的应用,探讨了碳点在电极材料构筑方面起到的关键作用,分析了碳点在钠离子电池应用中存在的挑战与未来的发展方向。本综述旨在为碳点在新一代储能电池方面的应用研究提供一定的参考和依据。
Carbon dots are a new class of carbon materials. Due to their ultrasmall size
abundant surface functional groups
good biocompatibility
non-toxicity and photoluminescence characteristics
they have been widely studied since their discovery and have been gradually applied in various fields. In recent years
the application of carbon dots in the new generation of secondary rechargeable batteries has attracted wide attention. In view of the advantages and challenges of the applications of carbon dots in electrode materials of sodium ion batteries
this review takes carbon dots derived carbon materials
surface modification and morphology control of carbon dots on electrode materials as the context
and systematically summarized the applications of carbon dots in electrode materials of sodium ion batteries. The key role of carbon dots in the construction of electrode materials is discussed
and the challenges and future development directions of carbon dots in the applications of sodium ion batteries are analyzed. This review aims to provide a certain reference and basis for the application of carbon dots in energy storage batteries.
碳点钠离子电池衍生碳材料表面修饰形貌调控
carbon dotssodium ion batteriesderived carbon materialssurface modificationmorphology control
XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].J. Am. Chem. Soc., 2004, 126(40): 12736-12737.
SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J].J. Am. Chem. Soc., 2006, 128(24): 7756-7757.
WANG X, CAO L, YANG S T, et al. Bandgap-like strong fluorescence in functionalized carbon nanoparticles [J].Angew. Chem. Int. Ed., 2010, 49(31): 5310-5314.
ZHAN J, GENG B J, WU K, et al. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence [J].Carbon, 2018, 130: 153-163.
ZHOU J G, BOOKER C, LI R Y, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) [J].J. Am. Chem. Soc., 2007, 129(4): 744-745.
WANG C F, WU X, LI X P, et al. Upconversion fluorescent carbon nanodots enriched with nitrogen for light harvesting [J].J. Mater. Chem., 2012, 22(31): 15522-15525.
DING H, YU S B, WEI J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism [J].ACS Nano, 2016, 10(1): 484-491.
BOURLINOS A B, STASSINOPOULOS A, ANGLOS D, et al. Surface functionalized carbogenic quantum dots [J].Small, 2008, 4(4): 455-458.
BAO L, LIU C, ZHANG Z L, et al. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning [J].Adv. Mater., 2015, 27(10): 1663-1667.
PENG H, TRAVAS-SEJDIC J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates [J].Chem. Mater., 2009, 21(23): 5563-5565.
LI F, LI Y Y, YANG X, et al. Highly fluorescent chiral N-S-doped carbon dots from cysteine: affecting cellular energy metabolism [J].Angew. Chem. Int. Ed., 2018, 57(9): 2377-2382.
YUAN F L, YUAN T, SUI L, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs [J].Nat. Commun., 2018, 9(1): 2249-1-11.
DAS R, BANDYOPADHYAY R, PRAMANIK P. Carbon quantum dots from natural resource: a review [J].Mater. Today Chem., 2018, 8: 96-109.
FAN H Z, ZHANG M, BHANDARI B, et al. Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection [J].Trends Food Sci. Technol., 2020, 95: 86-96.
RANI U A, NG L Y, NG C Y, et al. A review of carbon quantum dots and their applications in wastewater treatment [J].Adv. Colloid Interface Sci., 2020, 278: 102124.
YANG S T, CAO L, LUO P G, et al. Carbon dots for optical imaging in vivo [J].J. Am. Chem. Soc., 2009, 131(32): 11308-11309.
DING H, DU F Y, LIU P C, et al. DNA-carbon dots function as fluorescent vehicles for drug delivery [J].ACS Appl. Mater. Interfaces, 2015, 7(12): 6889-6897.
FENG T L, ZENG Q S, LU S Y, et al. Color-tunable carbon dots possessing solid-state emission for full-color light-emitting diodes applications [J].ACS Photonics, 2018, 5(2): 502-510.
HU C, YU C, LI M Y, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(Ⅱ) detection [J].Small, 2014, 10(23): 4926-4933.
ZHUO S J, SHAO M W, LEE S T. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis [J].ACS Nano, 2012, 6(2): 1059-1064.
朱家瑶, 董玥, 张苏, 等. 炭-/石墨烯量子点在超级电容器中的应用[J].物理化学学报, 2020, 36(2): 1903052-1-16.
ZHU J Y, DONG Y, ZHANG S, et al. Application of carbon-/graphene quantum dots for supercapacitors [J].Acta Phys.-Chim. Sinica, 2020, 36(2): 1903052-1-16. (in Chinese)
ZHANG X Y, ZENG Q S, XIONG Y, et al. Energy level modification with carbon dot interlayers enables efficient perovskite solar cells and quantum dot based light-emitting diodes [J].Adv. Funct. Mater., 2020, 30(11): 1910530-1-9.
LI Z Y, WANG L, LI Y, et al. Frontiers in carbon dots: design, properties and applications[J].Mater. Chem. Front., 2019, 3(12): 2571-2601.
WEI J S, SONG T B, ZHANG P, et al. A new generation of energy storage electrode materials constructed from carbon dots [J].Mater. Chem. Front., 2020, 4(3): 729-749.
PARK J, MOON J, KIM C, et al. Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries [J].NPG Asia Mater., 2016, 8(5): e272-1-10.
ZHU C Z, ZHAI J F, DONG S J. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction[J].Chem. Commun., 2012, 48(75): 9367-9369.
TAO S Y, FENG T L, ZHENG C Y, et al. Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials [J].J. Phys. Chem. Lett., 2019, 10(17): 5182-5188.
LIU H P, YE T, MAO C D. Fluorescent carbon nanoparticles derived from candle soot [J].Angew. Chem. Int. Ed., 2007, 46(34): 6473-6475.
LU S Y, SUI L, LIU J J, et al. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence [J].Adv. Mater., 2017, 29(15): 1603443-1-6.
BOURLINOS A B, STASSINOPOULOS A, ANGLOS D, et al. Photoluminescent carbogenic dots [J].Chem. Mater., 2008, 20(14): 4539-4541.
ZHENG L Y, CHI Y W, DONG Y Q, et al. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite [J].J. Am. Chem. Soc., 2009, 131(13): 4564-4565.
胡超, 穆野, 李明宇, 等. 纳米碳点的制备与应用研究进展[J].物理化学学报, 2019, 35(6): 572-590.
HU C, MU Y, LI M Y, et al. Recent advances in the synthesis and applications of carbon dots [J].Acta Phys. -Chim. Sinica, 2019, 35(6): 572-590. (in Chinese)
DONG Y Q, SHAO J W, CHEN C Q, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J].Carbon, 2012, 50(12): 4738-4743.
ZHU S J, SONG Y B, SHAO J R, et al. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units [J].Angew. Chem. Int. Ed., 2015, 54(49): 14626-14637.
LI H T, HE X D, KANG Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J].Angew. Chem. Int. Ed., 2010, 49(26): 4430-4434.
PENG J, GAO W, GUPTA B K, et al. Graphene quantum dots derived from carbon fibers [J].Nano Lett., 2012, 12(2): 844-849.
HU C F, LIU Y L, YANG Y H, et al. One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide [J].J. Mater. Chem. B, 2013, 1(1): 39-42.
ZHU S J, ZHAO X H, SONG Y B, et al. Beyond bottom-up carbon nanodots: citric-acid derived organic molecules [J].Nano Today, 2016, 11(2): 128-132.
ZHU H, WANG X L, LI Y L, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties [J].Chem. Commun., 2009, (34): 5118-5120.
JAISWAL A, GHOSH S S, CHATTOPADHYAY A. One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol) [J].Chem. Commun., 2012, 48(3): 407-409.
NIU F S, XU Y H, LIU M L, et al. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging [J].Nanoscale, 2016, 8(10): 5470-5477.
JIANG B P, ZHOU B, SHEN X C, et al. Selective probing of gaseous ammonia using red-emitting carbon dots based on an interfacial response mechanism [J].Chem.- Eur. J., 2015, 21(52): 18993-18999.
DU W, XU X Q, HAO H, et al. Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp [J].Sci. China-Chem., 2015, 58(5): 863-870.
ZHU L L, YIN Y J, WANG C F, et al. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding [J].J. Mater. Chem. C, 2013, 1(32): 4925-4932.
HSU P C, SHIH Z Y, LEE C H, et al. Synthesis and analytical applications of photoluminescent carbon nanodots [J].Green Chem., 2012, 14(4): 917-920.
LIN L X, ZHANG S W. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes [J].Chem. Commun., 2012, 48(82): 10177-10179.
LI Y, ZHAO Y, CHENG H H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups [J].J. Am. Chem. Soc., 2012, 134(1): 15-18.
MAI X D, CHI T T K, NGUYEN T C, et al. Scalable synthesis of highly photoluminescence carbon quantum dots [J].Mater. Lett., 2020, 268: 127595-1-4.
HOU H S, BANKS C E, JING M J, et al. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life [J].Adv. Mater., 2015, 27(47): 7861-7866.
HOU H S, SHAO L D, ZHANG Y, et al. Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries [J].Adv. Sci., 2017, 4(1): 1600243.
LI L, LI Y T, YE Y, et al. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage[J].ACS Nano, 2021, 15(4): 6872-6885.
HU C, LI M Y, QIU J S, et al. Design and fabrication of carbon dots for energy conversion and storage [J].Chem. Soc. Rev., 2019, 48(8): 2315-2337.
CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [J].Nature, 2012, 488(7411): 294-303.
JAVED M, SAQIB A N S, ATA-UR-REHMAN , et al. Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries [J].Electrochim. Acta, 2019, 297: 250-257.
SAROJA A P, GARAPATI M S, SHYIAMALADEVI R, et al. Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage [J].Appl. Surf. Sci., 2020, 504: 144430-1-12.
HONG D K, CHOI Y, RYU J, et al. Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries [J].J. Mater. Chem. A, 2019, 7(35): 20325-20334.
ZOU G Q, WANG C, HOU H S, et al. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries [J].Small, 2017, 13(31): 1700762-1-10.
ZOU G Q, HOU H S, ZHAO G G, et al. Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries [J].Green Chem., 2017, 19(19): 4622-4632.
GE P, HOU H S, LIU N C, et al. High-rate sodium ion anodes assisted by N-doped carbon sheets [J].Sustainable Energy Fuels, 2017, 1(5): 1130-1136.
GE P, HOU H S, CAO X Y, et al. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries [J].Adv. Sci., 2018, 5(6): 1800080-1-18.
XIE F, XU Z, JENSEN A C S, et al. Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency [J].J. Mater. Chem. A, 2019, 7(48): 27567-27575.
CHAO D L, ZHU C R, XIA X H, et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries [J].Nano Lett., 2015, 15(1): 565-573.
SU D W, WANG G X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries [J].ACS Nano, 2013, 7(12): 11218-11226.
UCHAKER E, ZHENG Y Z, LI S, et al. Better than crystalline: amorphous vanadium oxide for sodium-ion batteries[J].J. Mater. Chem. A, 2014, 2(43): 18208-18214.
BALOGUN M S, LUO Y, LYU F, et al. Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries [J].ACS Appl. Mater. Interfaces, 2016, 8(15): 9733-9744.
DENG G, CHAO D L, GUO Y W, et al. Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery [J].Energy Storage Mater., 2016, 5: 198-204.
LIU Z, ZHANG L H, SHENG L Z, et al. Edge-nitrogen-rich carbon dots pillared graphene blocks with ultrahigh volumetric/gravimetric capacities and ultralong life for sodium-ion storage [J].Adv. Energy Mater., 2018, 8(30): 1802042-1-12.
KONG D Z, WANG Y, HUANG S Z, et al. Surface modification of Na2Ti3O7 nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability [J].J. Mater. Chem. A, 2019, 7(20): 12751-12762.
WU M H, GAO Y P, HU Y, et al. Boosting sodium storage of mesoporous TiO2 nanostructure regulated by carbon quantum dots [J].Chin. Chem. Lett., 2020, 31(3): 897-902.
CHEN J, ZOU G Q, HOU H S, et al. Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage [J].J. Mater. Chem. A, 2016, 4(32): 12591-12601.
ZHANG Y, FOSTER C W, BANKS C E, et al. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage [J].Adv. Mater., 2016, 28(42): 9391-9399.
YANG Y C, JI X B, JING M J, et al. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries [J].J. Mater. Chem. A, 2015, 3(10): 5648-5655.
LIU F, WANG Y P, ZHANG Y F, et al. A facile carbon quantum dot-modified reduction approach towards tunable Sb@CQDs nanoparticles for high performance sodium storage [J].Batteries Supercaps, 2020, 3(5): 463-469.
0
Views
644
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution