Wei LIU, Zhu-xin LI, Jun-jie WANG, et al. Regulation of Electroluminescent Properties of ZnO/GaN Light Emitting Diodes by Er3+ Doping. [J]. Chinese Journal of Luminescence 42(6):863-870(2021)
DOI:
Wei LIU, Zhu-xin LI, Jun-jie WANG, et al. Regulation of Electroluminescent Properties of ZnO/GaN Light Emitting Diodes by Er3+ Doping. [J]. Chinese Journal of Luminescence 42(6):863-870(2021) DOI: 10.37188/CJL.20210125.
Regulation of Electroluminescent Properties of ZnO/GaN Light Emitting Diodes by Er3+ Doping增强出版
doped ZnO nanorod arrays were prepared by hydrothermal method
the morphology and luminescence properties were characterized by field emission scanning electron microscopy
X-ray single crystal diffraction
transmission electron microscopy and micro spectrometer. The experimental results show that Er
3+
is successfully and uniformly doped into ZnO nanorods
and the formation of Er
2
O
3
is not found. After Er
3+
doped
the photoluminescence spectrum shows a broad band peaked at 400 nm. With the increasing of Er
3+
concentration
the proportion of the blue part decreases
which indicates that Er
3+
fills part of the Zn vacancy defects and suppresses part of the O vacancy defects. At the same time
combined with the fluorescence lifetime spectrum
it can also be found that the lifetime of the radiative part is prolonged
which indicates that the fluorescence radiation efficiency is improved. Finally
ZnO nanorod contented Er
3+
with a mass concentration of 30% was selected to fabricate ZnO/GaN light-emitting diodes. Compared with the samples without Er
3+
the electroluminescence intensity of ZnO/GaN light-emitting diodes increased by five times. This paper provides a simple and feasible method to improve the performance of ZnO based electroluminescent devices.
JACOBS I E, MOULÉ A J. Controlling molecular doping in organic semiconductors [J].Adv. Mater., 2017, 29(42):1703063.
CHEN W, QI D C, GAO X Y, et al. Surface transfer doping of semiconductors [J].Prog. Surf. Sci., 2009, 84(9-10):279-321.
NORRIS D J, EFROS A L, ERWIN S C. Doped nanocrystals [J].Science, 2008, 319(5871):1776-1779.
WANG H, HO H P, XU J B. Photoelectron spectroscopic investigation of nitrogen chemical states in ZnO∶(N, Ga) thin films [J].J. Appl. Phys., 2008, 103(10):103704-1-6.
ALGARNI H, EL-GOMATI M M, AL-ASSIRI M S. Effect of gallium concentrations on the morphologies, structural and optical properties of Ga-doped ZnO nanostructures [J].J. Nanosci. Nanotechnol., 2014, 14(7):5317-5323.
SITTHICHAI S, PHURUANGRAT A, THONGTEM T, et al. Influence of Mg dopant on photocatalytic properties of Mg-doped ZnO nanoparticles prepared by sol-gel method [J].J. Ceram. Soc. Jpn., 2017, 125(3):122-124.
SA-NGUANPRANG S, PHURUANGRAT A, THONGTEM T, et al. Synthesis, analysis, and photocatalysis of Mg-doped ZnO nanoparticles [J].Russ. J. Inorg. Chem., 2019, 64(14):1841-1848.
YOU Q H, CAI H, HU Z G, et al. Blue shift in absorption edge and widening of band gap of ZnO by Al doping and Al-N co-doping [J].J. Alloys Compd., 2015, 644:528-533.
HUR T B, HWANG Y H, KIM H K. Impurity band characteristics near the band edge of Al-doped ZnO [J].J. Appl. Phys., 2004, 96(3):1507-1510.
ISHIKAWA Y, OKAMOTO M, TANAKA S, et al. Influence of annealing on the 1.5 μm light emission of Er-doped ZnO thin films and its crystal quality [J].J. Mater. Res., 2005, 20(9):2578-2582.
LO J W, LIEN W C, LIN C A, et al. Er-doped ZnO nanorod arrays with enhanced 1 540 nm emission by employing Ag island films and high-temperature annealing [J].ACS Appl. Mater. Interfaces, 2011, 3(4):1009-1014.
PAL U, MELÉNDREZ R, CHERNOV V, et al. Thermoluminescence properties of ZnO and ZnO∶Yb nanophosphors [J].Appl. Phys. Lett., 2006, 89(18):183118-1-3.
HENG C L, ZHAO C N, ZHANG L, et al. Effects of Yb doping on the structure and near band-edge emission of ZnO thin films on Si after high temperature annealing [J].J. Lumin., 2020, 222:117153.
PHURUANGRAT A, YAYAPAO O, THONGTEM T, et al. Preparation, characterization and photocatalytic properties of Ho doped ZnO nanostructures synthesized by sonochemical method [J].Superlattice. Microst., 2014, 67:118-126.
KABONGO G L, MBULE P S, MHLONGO G H, et al. Photoluminescence quenching and enhanced optical conductivity of P3HT-derived Ho3+-doped ZnO nanostructures [J].Nanoscale Res. Lett., 2016, 11(1):418-1-11.
CHADI D J. Doping in znse, znte, mgse, and mgte wide-band-gap semiconductors [J].Phys. Rev. Lett., 1994, 72(4):534-537.
ZHANG L C, ZHAO F Z, WANG F F, et al. Improvement in electroluminescence performance of n-ZnO/Ga2O3/p-GaN heterojunction light-emitting diodes [J].Chin. Phys. B, 2013, 22(12):128502-1-5.
ZHANG L C, LI Q S, SHANG L, et al. Improvement of UV electroluminescence of n-ZnO/p-GaN heterojunction LED by ZnS interlayer [J].Opt. Express, 2013, 21(14):16578-16583.
XU C X, QIN F F, ZHU Q X, et al. Plasmon-enhanced ZnO whispering-gallery mode lasing [J].Nano Res., 2018, 11(6):3050-3064.
ABIYASA A P, YU S F, LAU S P, et al. Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance [J].Appl. Phys. Lett., 2007, 90(23):231106-1-3.
CHENG C W, SIE E J, LIU B, et al. Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles [J].Appl. Phys. Lett., 2010, 96(7):071107-1-3.
PARK D, TAK Y, KIM J, et al. Low-temperature synthesized ZnO nanoneedles:XPS and PL analysis [J].Sur. Rev. Lett., 2007, 14(6):1061-1065.
ZSOLDOS Z, SARKANY A, GUCZI L. XPS evidence of alloying in Pd/ZnO catalysts [J].J. Catal., 1994, 145(1):235-238.
MO X M, LI Z X, LIU C F, et al. Improving and manipulating green-light electroluminescence in solution-processed ZnO nanocrystals via erbium doping [J].J. Lumin., 2019, 213:127-132.
YOU D T, XU C X, ZHAO J, et al. Single-crystal ZnO/AlN core/shell nanowires for ultraviolet emission and dual-color ultraviolet photodetection [J].Adv. Opt. Mater., 2019, 7(6):1801522-1-8.
YOU D T, XU C X, WANG X X, et al. A core@dual-shell nanorod array with a cascading band configuration for enhanced photocatalytic properties and anti-photocorrosion [J].J. Mater. Chem. A, 2020, 8(7):3726-3734.
YOU D T, XU C X, ZHANG W, et al. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays [J].Nano Energy, 2019, 62:310-318.
ZENG H B, DUAN G T, LI Y, et al. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes:defect origins and emission controls [J].Adv. Funct. Mater., 2010, 20(4):561-572.
CHEN C, DUTTA M, STROSCIO M A. Confined and interface phonon modes in GaN/ZnO heterostructures [J].J. Appl. Phys., 2004, 95(5):2540-2546.
LIU S J, YU Q X, WANG J, et al. Photoluminescence of a ZnO/GaN heterostructure interface [J].Chin. Phys. Lett., 2009, 26(7):077805-1-4.