浏览全部资源
扫码关注微信
太原理工大学 物理与光电工程学院,山西 太原 030024
Published:01 July 2021,
Received:19 March 2021,
Revised:04 April 2021,
移动端阅览
WAN-RAN SU, LIN FENG, LIN-LIN SHI, et al. Research Progress in Surface Plasmon Enhanced Photodetectors. [J]. Chinese journal of luminescence, 2021, 42(7): 1014-1028.
WAN-RAN SU, LIN FENG, LIN-LIN SHI, et al. Research Progress in Surface Plasmon Enhanced Photodetectors. [J]. Chinese journal of luminescence, 2021, 42(7): 1014-1028. DOI: 10.37188/CJL.20210100.
光电探测器可以实现光信号到电信号的转换,在工业、军事、医疗等领域已展现出巨大的应用价值。但是,传统的平直型光电探测器捕获线光的能力较弱,一定程度上限制了响应率等性能指标的进一步提高。而基于贵金属纳米结构的表面等离激元共振可以急剧增强近场区域的(纳米尺度)电场强度和对线光的捕获能力,大幅度地提高光电探测器性能。本文首先介绍了表面等离激元的基本原理。随后,详细介绍了金属纳米颗粒、金属光栅等不同结构的表面等离激元增强型光电探测器研究进展。最后,总结全文并针对表面等离激元增强型光电探测器的发展前景做出了展望。
Photodetectors can realize the conversion of optical signal to electrical signal
and have shown great application value in the fields of industry
military
medical treatment and so on. However
the traditional flat photodetector has a weak ability to capture line light
which limits the further improvement of responsiveness and other performance indicators to a certain extent. Surface plasmon resonance effect based on noble metal nanostructure can dramatically enhance the electric field intensity in the near field region and strengthen the ability of the photodetector to capture the line light
thus greatly improve the performance of photodetector. In this paper
the basic principle of surface plasmons is introduced at first. Then
the research progress of surface plasmon enhanced photodetectors with different structures
such as metal nanoparticles and metal gratings
is introduced in detail. Finally
the thesis is summarized and the development prospect of surface plasmon enhanced photodetectors is put forward.
传播型表面等离激元局域表面等离激元光电探测器金属纳米颗粒金属光栅
propagating surface plasmon polaritonslocalized surface plasmon polaritonsphotodetectormetal nanoparticlesmetal grating
DOWNS C, VANDERVELDE T E. Progress in infrared photodetectors since 2000 [J].Sensors, 2013, 13(4): 5054-5098.
WOOD R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum [J].Proc. Phys. Soc. London, 1902, 18(1): 269-275.
FANO U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s Waves) [J].J. Opt. Soc. Am., 1941, 31(3): 213-222.
PINES D. Collective energy losses in solids [J].Rev. Mod. Phys., 1956, 28(3): 184-198.
ZHANG F, LIU W, LIU Y, et al. Fabrication and enhanced photocatalytic properties of Pt@SiO2@TiO2 composites by surface plasma resonance from Pt nanoparticles [J].J. Nanopart. Res., 2015, 17(2): 1-9.
WANG D D, GE C W, WU G A. A sensitive red light nano-photodetector propelled by plasmonic copper nanoparticles [J].J. Mater. Chem. C, 2017, 5(6): 1328-1335.
MOUSAVI S S, STÖHR A, BERINI P. Plasmonic photodetector with terahertz electrical bandwidth [J].Appl. Phys. Lett., 2017, 104(14): 143112-1-3.
HOESSBACHER C, SALAMIN Y, FEDORYSHYN Y. Optical interconnect solution with plasmonic modulator and Ge photodetector array [J].IEEE Photon. Technol. Lett., 2017, 29(21): 1760-1763.
BRAWLEY Z T, BAUMAN S J, ABBEY G P, et al. Modeling and optimization of Au-GaAs plasmonic nanoslit array structures for enhanced near-infrared photodetector applications [J].J. Nanophoton., 2017, 11(1): 016017-1-9.
JING Y L, LI Z F, LI Q. Pixel-level plasmonic microcavity infrared photodetector [J].Sci. Rep., 2016, 6: 25849-1-8.
ZHANG H Q, BOUSSAAD S, TAO N J. High-performance differential surface plasmon resonance sensor using quadrant cell photodetector [J].Rev. Sci. Instrum., 2003, 74(1): 150-153.
TAMM I R, DAWSON P, SELLAI A, et al. Analysis of surface plasmon polariton enhancement in photodetection by Al-GaAs Schottky diodes [J].Solid-State Electron., 1993, 36(10): 1417-1427.
DABOO C, BAIRD M J, HUGHES H P, et al. Surface-plasmon-enhanced photodetection in planar Au-GaAs Schottky junctions [J].Thin Solid Films, 1990, 189(1): 27-38.
DINH T M, HUYNH H Q, MAI T M N, et al. Enhancing the performance of photodetectors based on ZnO nanorods decorated with Ag nanoparticles [J].Semicond. Sci. Technol., 2021, 36(4): 045009-1-7.
YANG W H, LI H, CHEN J J, et al. Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays [J].Appl. Surf. Sci., 2020, 504: 144252-1-7.
王浩冰, 陶金, 吕金光, 等. 局域表面等离激元共振增强硅蓝光波段吸收特性研究 [J].中国光学, 2020, 13(6): 1362-1384.
WANG H B, TAO J, LV J G, et al. Absorption enhancement of silicon via localized surface plasmons resonance in blue band [J].Chin. Opt., 2020, 13(6): 1362-1384. (in Chinese)
MIWA K, EBIHARA H, FANG X, et al. Photo-thermoelectric conversion of plasmonic nanohole array [J].Appl. Sci., 2020, 10(8): 2681-1-8.
GU P, WANG J P, MÜLLER-BUSCHBAUM P, et al. Infrared thin film detectors based on thermoresponsive microgels with linear shrinkage behavior and gold nanorods [J].ACS Appl. Mater. Interfaces, 2020, 12(30): 34180-34189.
BAI M Y, LIU H, XIE F, et al. Improvement of two-dimensional material-based photodetector through surface plasmon [J].Int. J. Mod. Phys. B, 2020, 34(28): 2050258.
SAVIT A, KAUR H. Impact of silver nanogratings for enhanced light absorption in plasmonic based photodetector [J].Optik, 2019, 199: 163367.
RITCHIE R H. Plasma losses by fast electrons in thin films [J].Phys. Rev., 1957, 106(5): 874-881.
ZAKHARIAN A R, MOLONEY J V, MANSURIPUR M. Surface plasmon polaritons on metallic surfaces [J].Opt. Express, 2007, 15(1): 183-197.
ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons [J].Phys. Rep., 2005, 408(3-4): 131-314.
ZHANG J X, ZHANG L D, XU W. Surface plasmon polaritons:physics and applications [J].J. Phys. D Appl. Phys., 2012, 45(11): 113001-1-19.
WILLETS K A, VAN DUYNE R P. Localized surface plasmon resonance spectroscopy and sensing [J].Annu. Rev. Phys. Chem., 2007, 58: 267-297.
MANJAVACAS A, LIU J G, KULKARNI V, et al. Plasmon-induced hot carriers in metallic nanoparticles [J].ACS Nano, 2014, 8(8): 7630-7638.
YOON J W, PARK W J, LEE K J, et al. Surface-plasmon mediated total absorption of light into silicon [J].Opt. Express, 2011, 19(21): 20673-20680.
STOCKMAN M I. Nanoplasmonics:the physics behind the applications [J].Phys. Today, 2011, 64(2): 39-44.
KNIGHT M W, KING N S, LIU L F, et al. Aluminum for plasmonics [J].ACS Nano, 2014, 8(1): 834-840.
AIZPURUA J, BRYANT G W, RICHTER L J, et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy [J].Phys. Rev. B, 2005, 71(23): 235420-1-13.
KELLY K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment [J].J. Phys. Chem. B, 2003, 107(3): 668-677.
FUCHS R. Theory of the optical properties of ionic crystal cubes [J].Phys. Rev. B, 1975, 11(4): 1732-1740.
LU X M, RYCENGA M, SKRABALAK S E, et al. Chemical synthesis of novel plasmonic nanoparticles [J].Annu. Rev. Phys. Chem., 2009, 60: 167-192.
杨晨, 王荣瑶, 王鹏, 等. 表面等离激元探针的高介电灵敏度与液体折射率测定 [J].大学物理, 2012, 31(5): 62-65.
YANG C, WANG R Y, WANG P, et al. High dielectric sensitivity of surface plasmon probe and measurement of liquid refractive index [J].Coll. Phys., 2012, 31(5): 62-65. (in Chinese)
NIELSEN M G, PORS A, ALBREKTSEN O, et al. Efficient absorption of visible radiation by gap plasmon resonators [J].Opt. Express, 2012, 20(12): 13311-13319.
洪霞, 郭雄彬, 方旭, 等. 基于表面等离子体共振增强的硅基锗金属-半导体-金属光电探测器的设计研究 [J].物理学报, 2013, 62(17): 178502-1-7.
HONG X, GUO X B, FANG X, et al. Design of silicon based germanium metal-semiconductor-metal photodetector enhanced by surface plasmon resonance [J].Acta Phys. Sinica, 2013, 62(17): 178502-1-7. (in Chinese)
MASOULEH F F, DAS N, ROZATI S M. Assessment of amplifying effects of ridges spacing and height on nano-structured MSM photo-detectors [J].Opt. Quant. Electron., 2015, 47(2): 193-201.
MASOULEH F F, DAS N, ROZATI S M. Optimal subwavelength design for efficient light trapping in central slit of plasmonics-based metal-semiconductor-metal photodetector [J].Opt. Quant. Electron., 2015, 47(6): 1477-1485.
DAS N, MASOULEH F F, MASHAYEKHI H R. Light absorption and reflection in nanostructured GaAs metal-semiconductor-metal photodetectors [J].IEEE Trans. Nanotechnol., 2014, 13(5): 982-989.
KITSON S C, BARNES W L, SAMBLES J R. Full photonic band gap for surface modes in the visible [J].Phys. Soc., 1996, 77(13): 2670-2673.
CUI Y X, HE Y R, JIN Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers [J].Laser Photon. Rev., 2014, 8(4): 495-520.
MASOULEH F F, DAS N K, MASHAYEKHI H R. Comparison of different plasmonic nanograting profiles for quality light absorption in nanostructured metal-semiconductor-metal photodetectors [J].Opt. Eng., 2013, 52(12): 127101-1-7.
TAN C L, LYSAK V V, DAS N, et al. Absorption enhancement of MSM photodetector structure with a plasmonic double grating structure [C].Proceedings of the 10th IEEE International Conference on Nanotechnology, Ilsan, 2010:849-853.
BHAT R D R, PANOIU N C, BRUECK S R J, et al. Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating [J].Opt. Express, 2008, 16(7): 4588-4596.
REN F F, ANG K W, YE J D, et al. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector [J].Nano Lett., 2011, 11(3): 1289-1293.
GENEVET P, LIN J, KATS M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes [J].Nat. Commun., 2012, 3(11): 1278-1-5.
MARTÍN-MORENO L, GARCÍA-VIDAL F J, LEZEC H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays [J].Phys. Rev. Lett., 2001, 86(6): 1114-1117.
YU Z F, VERONIS G, FAN S H, et al. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures [J].Appl. Phys. Lett., 2006, 89(15): 151116-1-3.
EBBESEN T W, LEZEC H J, GHAEMI H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays [J].Nature, 1998, 391(6668): 667-669.
ZHANG Y M, CHEN H B, LI Z F, et al. The optical coupling improvement of THz quantum well infrared photodetectors based on the plasmonic induced near-field effect [J].Phys. B Condens. Matter, 2010, 405(2): 552-554.
WU W, BONAKDAR A, MOHSENI H. Plasmonic enhanced quantum well infrared photodetector with high detectivity [J].Appl. Phys. Lett., 2010, 96(16): 161107-1-3.
SHENOI R V, ROSENBERG J, VANDERVELDE T E, et al. Multispectral quantum dots-in-a-well infrared detectors using plasmon assisted cavities [J].IEEE J. Quantum Electron., 2010, 46(7): 1051-1057.
ROSENBERG J, SHENOI R V, KRISHNA S, et al. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors [J].Opt. Express, 2010, 18(4): 3672-3686.
LEE S C, KRISHNA S, BRUECK S R J. Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors [J].Appl. Phys. Lett., 2010, 97(2): 021112-1-3.
LEE J H, CHANG Y T, HUANG C J, et al. Two-color qauntum-dot infrared photodetectors with periodic cross metal hole array contact [J].IEEE Photon. Technol. Lett., 2010, 22(8): 577-579.
WU W, BONAKDAR A, GELFAND R, et al. A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance [C].Proceedings of SPIE 7780, Detectors and Imaging Devices:Infrared, Focal Plane, Single Photon, San Diego, 2010.
LIU R, VASINAJINDAKAW P, GU G, et al. Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves [J].J. Phys. D:Appl. Phys., 2013, 46(1): 015102-7.
CHANG C C, SHARMA Y D, KIM Y S, et al. A surface plasmon enhanced infrared photodetector based on InAs quantum dots [J].Nano Lett., 2010, 10(5): 1704-1709.
WANG Y M, SU X D, ZHU Y Y, et al. Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns [J].Appl. Phys. Lett., 2009, 95(24): 241106-1-3.
ROSENBERG J, SHENOI R V, VANDERVELDE T E, et al. A multispectral and polarization-selective surface-plasmon resonant midinfrared detector [J].Appl. Phys. Lett., 2009, 95(16): 161101-1-3.
WOOD R W. A suspected case of the electrical resonance of minute metal particles for light-waves. A new type of absorption [J].Phys. Soc., 1902, 18(1): 166-182.
GHAEMI H F, THIO T, GRUPP D E, et al. Surface plasmons enhance optical transmission through subwavelength holes [J].Phys. Rev. B, 1998, 58(11): 6779-6682.
CHANG C Y, CHANG H Y, CHEN C Y, et al. Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays [J].Appl. Phys. Lett., 2007, 91(16): 163107-1-3.
LUO L B, ZHENG K, GE C W, et al. Surface plasmon-enhanced nano-photodetector for green light detection [J].Plasmonics, 2015, 11(2): 619-625.
HU K, CHEN H Y, JIANG M M, et al. Broadband photoresponse enhancement of a high-performance t-Se microtube photodetector by plasmonic metallic nanoparticles [J].Adv. Funct. Mater., 2016, 26(36): 6641-6648.
HUSSAIN A A, SHARMA B, BARMAN T, et al. Self-powered broadband photodetector using plasmonic titanium nitride [J].ACS Appl. Mater. Interfaces, 2016, 8(6): 4258-4265.
LUO L B, ZOU Y F, GE C W, et al. A surface plasmon enhanced near-infrared nanophotodetector [J].Adv. Opt. Mater., 2016, 4(5): 763-771.
SUN Z H, AIGOUY L, CHEN Z Y. Plasmonic-enhanced perovskite-graphene hybrid photodetectors [J].Nanoscale, 2016, 8(14): 7377-7383.
WANG L, CHEN R, REN Z F, et al. Plasmonic silver nanosphere enhanced ZnSe nanoribbon/Si heterojunction optoelectronic devices [J].Nanotechnology, 2016, 27(21): 215202-1-9.
WANG Y, GE C W, ZOU Y F, et al. Plasmonic indium nanoparticle-induced high-performance photoswitch for blue light detection [J].Adv. Opt. Mater., 2016, 4(2): 291-296.
DERESHGI S A, SISMAN Z, TOPALLI K, et al. Plasmonically enhanced metal-insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications [J].Sci. Rep., 2017, 7(1): 42349-1-8.
BISWAS P, CHO S R, KIM J W, et al. Improved UV response of ZnO nanotubes by resonant coupling of anchored plasmonic silver nanoparticles [J].Nanotechnology, 2017, 28(22): 225502.
CHOI D S, HANSEN M, VAN KEUREN E, et al. Highly photoresponsive, ZnO nanorod-based photodetector for operation in the visible spectral range [J].Nanotechnology, 2017, 28(14): 145203-1-12.
GHIMIRE R R, NATH R, NEOGY R K, et al. Ligand-free attachment of plasmonic Au nanoparticles on ZnO nanowire to make a high-performance broadband photodetector using a laser-based method [J].Nanotechnology, 2017, 28(29): 295703.
LI Y, DISTEFANO J G, MURTHY A A, et al. Superior plasmonic photodetectors based on Au@MoS2 core-shell heterostructures [J].ACS Nano, 2017, 11(10): 10321-10329.
LIANG F X, GE C W, ZHANG T F, et al. Plasmonic hollow gold nanoparticles induced high-performance Bi2S3 nanoribbon photodetector [J].Nanophotonics, 2017, 6(2): 494-501.
LU X J, MOJAVERIAN N, LI L, et al. A back side configured pointed dipole plasmonic optical antenna array enhanced quantum dot infrared photodetector [J].Semicond. Sci. Technol., 2017, 32(12): 125017-1-7.
LU X J, VAILLANCOURT J, GU G R. A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency [J].J. Phys. D Appl. Phys., 2017, 50(13): 135101.
WANG X, LIU K W, CHEN X, et al. Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector [J].ACS Appl. Mater. Interfaces, 2017, 9(6): 5574-5579.
LI G M, ZHANG J W, CHEN G D, et al. Comparison between two device structures of SPR enhanced UV detectors based on ZnO [J].Eur. Phys. J. Appl. Phys., 2017, 80(1): 10102.
JING W K, DING N, LI L Y, et al. Ag nanoparticles modified large area monolayer MoS2 phototransistors with high responsivity [J].Opt. Express, 2017, 25(13): 14565-14574.
LUO L B, HUANG X L, WANG M Z, et al. The effect of plasmonic nanoparticles on the optoelectronic characteristics of CdTe nanowires [J].Small, 2014, 10(13): 2645-2652.
LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J].Nat. Mater., 2011, 10(12): 911-921.
CUSHING S K, WU N Q. Progress and perspectives of plasmon-enhanced solar energy conversion [J].J. Phys. Chem. Lett., 2016, 7(4): 666-675.
CHEN M Y, SHAO L, KERSHAW S V, et al. Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures [J].ACS Nano, 2014, 8(8): 8208-8216.
CHANG X H, WANG Y F, ZHANG X F, et al. Iridium size effects in localized surface plasmon-enhanced diamond UV photodetectors [J].Appl. Surf. Sci., 2019, 487: 674-677.
PANCHENKO E, CADUSCH J J, JAMES T D, et al. Plasmonic metasurface-enabled differential photodetectors for broadband optical polarization characterization [J].ACS Photon., 2016, 3(10): 1833-1839.
WANG B, ZOU Y T, LU H Y, et al. Boosting perovskite photodetector performance in NIR using plasmonic bowtie nanoantenna arrays [J].Small, 2020, 16(24): 2001417.
DU B W, YANG W Q, JIANG Q, et al. Plasmonic-functionalized broadband perovskite photodetector [J].Adv. Opt. Mater., 2018, 6(8): 1701271-1-8.
CHU Y Z, BANAEE M G, CROZIER K B. Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at Excitation and Stokes frequencies [J].ACS Nano, 2010, 4(5): 2804-2810.
CHEN H H, SU Y C, HUANG W L, et al. A plasmonic infrared photodetector with narrow bandwidth absorption [J].Appl. Phys. Lett., 2014, 105(2): 023109-1-4.
邱开放, 翟爱平, 王文艳, 等. 表面等离激元热载流子光电探测器研究进展 [J].半导体技术, 2020, 45(3): 169-178.
QIU K F, ZHAI A P, WANG W Y, et al. Research progress of surface plasmon hot carrier photodetector [J].Semicond. Technol., 2020, 45(3): 169-178. (in Chinese)
ISHII S, SHINDE S L, NAGAO T. Nonmetallic materials for plasmonic hot carrier excitation [J].Adv. Opt. Mater., 2019, 7(1): 1800603-1-13.
ŻYŁA G, VALLEJO J P, LUGO L. Isobaric heat capacity and density of ethylene glycol based nanofluids containing various nitride nanoparticle types:an experimental study [J].J. Mol. Liq., 2018, 261: 530-539.
ZHANG Z Y, JIANG X Y, LIU B K, et al. IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation [J].Adv. Mater., 2018, 30(9): 1705221-1-10.
0
Views
462
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution