浏览全部资源
扫码关注微信
1.长春理工大学 材料科学与工程学院,吉林 长春 130022
2.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室,吉林 长春 130022
Published:01 July 2021,
Received:19 March 2021,
Revised:02 April 2021,
移动端阅览
ZHI-HUA MA, RONG-RONG MA, WEN-YUE DONG, et al. Recent Advances on Thermally Activated Delayed Fluorescence Dendrimers. [J]. Chinese journal of luminescence, 2021, 42(7): 904-916.
ZHI-HUA MA, RONG-RONG MA, WEN-YUE DONG, et al. Recent Advances on Thermally Activated Delayed Fluorescence Dendrimers. [J]. Chinese journal of luminescence, 2021, 42(7): 904-916. DOI: 10.37188/CJL.20210099.
树枝状发光材料是一类由中心核和外围树枝构成的具有三维空间结构的发光功能材料,既具有有机小分子发光材料明确的化学结构和确定的分子量,又具有高分子发光材料的良好溶液加工性能,是发展低成本、高效率有机电致发光器件的重要材料体系。具有热活化延迟荧光效应的树枝状发光材料能够通过反向系间窜越过程将三线态激子转变为单线态激子而发出荧光,其器件理论内量子效率可以达到100%,是开发设计高效树枝状发光材料的有效途径。近年来,在分子设计方面,树枝状热活化延迟荧光材料取得了重要进展,形成了种类丰富的材料体系,同时其器件性能得到了大幅提升。本文根据树枝状热活化延迟荧光材料的中心核进行分类,围绕其分子设计、光物理特性和器件性能,总结和评述了国内外研究者在该领域的主要研究进展,并分析了其未来发展所面临的机遇和挑战。
Dendritic luminescent materials are a kind of three-dimensional(3D) organic optoelectrical functional materials composed of the central core and the dendrons. They are regarded as an important category of organic luminescent materials for the development of cost-effective and high-efficiency organic light emitting devices(OLEDs) because they possess well-defined molecular structure like small molecules and excellent solubility like polymers. Thermally activated delayed fluorescence(TADF) dendrimers-based OLEDs can realize 100% internal quantum efficiency by utilizing triplet excitons through enhanced reverse intersystem crossing process from the lowest triplet state to singlet state. Thus
TADF dendrimers represent a promising approach towards highly efficient dendritic luminescent materials. During these years
significant progress has been made on the molecular design and device performance of TADF dendrimers. In this review
we classify the TADF dendrimers according to their core structure and summarize their research progress with the emphasis on molecular structure
photophysical properties and device performances. Finally
the perspectives and the key challenges on developing TADF dendrimers are discussed.
热活化延迟荧光树枝状发光材料溶液加工有机电致发光
thermally activated delayed fluorescencedendritic luminescent materialssolution processibleorganic light-emitting diodes
BYEON S Y, LEE D R, YOOK K S, et al. Recent progress of singlet-exciton-harvesting fluorescent organic light-emitting diodes by energy transfer processes [J].Adv. Mater., 2019, 31(34): 1803714-1-15.
LO S C, BURN P L. Development of dendrimers:macromolecules for use in organic light-emitting diodes and solar cells [J].Chem. Rev., 2007, 107(4): 1097-1116.
邵世洋, 丁军桥, 王利祥. 高分子发光材料研究进展 [J].高分子学报, 2018, (2): 198-216.
SHAO S Y, DING J Q, WANG L X. Research progress on electroluminescent polymers [J].Acta Polym. Sinica, 2018, (2): 198-216. (in Chinese)
HECHT S, FRÉCHET J M J. Dendritic encapsulation of function:applying nature's site isolation principle from biomimetics to materials science [J].Angew. Chem. Int. Ed., 2001, 40(1): 74-91.
GRIMSDALE A C, CHAN K L, MARTIN R E, et al. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices [J].Chem. Rev., 2009, 109(3): 897-1091.
曲波, 陈志坚, 李福山, 等. 聚芴类有机电致发光的材料和器件 [J].发光学报, 2007, 28(5): 683-692.
QU B, CHEN Z J, LI F S, et al. Materials and devices in the field of polyfluorene derivatives organic electroluminescence [J].Chin. J. Lumin., 2007, 28(5): 683-692. (in Chinese)
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J].Nature, 2012, 492(7428): 234-238.
TAO Y, YUAN K, CHEN T, et al. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics [J].Adv. Mater., 2014, 26(47): 7931-7958.
IM Y, KIM M, CHO Y J, et al. Molecular design strategy of organic thermally activated delayed fluorescence emitters [J].Chem. Mater., 2017, 29(5): 1946-1963.
WONG M Y, ZYSMAN-COLMAN E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes [J].Adv. Mater., 2017, 29(22): 1605444-1-54.
XIE Y J, LI Z. Thermally activated delayed fluorescent polymers [J].J. Polym. Sci. Part A: Polym. Chem., 2017, 55(4): 575-584.
YANG Z Y, MAO Z, XIE Z L, et al. Recent advances in organic thermally activated delayed fluorescence materials [J].Chem. Soc. Rev., 2017, 46(3): 915-1016.
BUI T T, GOUBARD F, IBRAHIM-OUALI M, et al. Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs) [J].Beilstein J. Org. Chem., 2018, 14: 282-308.
LIU Y C, LI C S, REN Z J, et al. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes [J].Nat. Rev. Mater., 2018, 3(4): 18020-1-20.
WEI Q, GE Z Y, VOIT B. Thermally activated delayed fluorescent polymers:structures, properties, and applications in OLED devices [J].Macromol. Rapid Commun., 2019, 40(1): 1800570.
邵世洋, 丁军桥, 王利祥. 高分子热活化延迟荧光材料研究进展 [J].应用化学, 2018, 35(9): 993-1004.
SHAO S Y, DING J Q, WANG L X. Recent advances on thermally activated delayed fluorescence polymers [J].Chin. J. Appl. Chem., 2018, 35(9): 993-1004. (in Chinese)
JIANG T C, LIU Y C, REN Z J, et al. The design, synthesis and performance of thermally activated delayed fluorescence macromolecules [J].Polym. Chem., 2020, 11(9): 1555-1571.
SHAO S Y, WANG L X. Through-space charge transfer polymers for solution-processed organic light-emitting diodes [J].Aggregate, 2020, 1(1): 45-56.
ZOU Y, GONG S L, XIE G H, et al. Design strategy for solution-processable thermally activated delayed fluorescence emitters and their applications in organic light-emitting diodes [J].Adv. Opt. Mater., 2018, 6(23): 1800568-1-25.
蒋云波, 李欢欢, 陶冶, 等. 热活化延迟荧光聚合物及其电致发光器件 [J].化学进展, 2019, 31(8): 1116-1128.
JIANG Y B, LI H H, TAO Y, et al. Thermally activated delayed fluorescence polymers and applications in organic light emitting devices [J].Progr. Chem., 2019, 31(8): 1116-1128. (in Chinese)
华磊, 闫寿科, 任忠杰. 聚合物热激活延迟荧光材料的分子设计与器件性能 [J].高分子学报, 2020, 51(5): 457-468.
HUA L, YAN S K, REN Z J. Molecular design and device performance of thermally activated delayed fluorescent polymer materials [J].Acta Polym. Sinica, 2020, 51(5): 457-468. (in Chinese)
XIE G H, LUO J J, HUANG M L, et al. Inheriting the characteristics of TADF small molecule by side-chain engineering strategy to enable bluish-green polymers with high PLQYs up to 74% and external quantum efficiency over 16% in light-emitting diodes [J].Adv. Mater., 2017, 29(11): 1604223-1-7.
LI X, WANG K, SHI Y Z, et al. Efficient solution-processed orange-red organic light-emitting diodes based on a novel thermally activated delayed fluorescence emitter [J].J. Mater. Chem. C, 2018, 6(34): 9152-9157.
YANG H Y, ZHENG C J, ZHANG M, et al. Green solution-processed thermally activated delayed fluorescence OLEDs with improved performance by using interfacial exciplex host [J].Org. Electron., 2019, 73: 36-42.
ALBRECHT K, MATSUOKA K, FUJITA K, et al. Carbazole dendrimers as solution-processable thermally activated delayed-fluorescence materials [J].Angew. Chem. Int. Ed., 2015, 54(19): 5677-5682.
ALBRECHT K, MATSUOKA K, YOKOYAMA D, et al. Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency [J].Chem. Commun., 2017, 53(16): 2439-2442.
ALBRECHT K, MATSUOKA K, FUJITA K, et al. A dendrimer emitter doped in a dendrimer host:efficient thermally activated delayed fluorescence OLEDs with fully-solution processed organic-layers [J].Mater. Chem. Front., 2018, 2(6): 1097-1103.
GODUMALA M, CHOI S, KIM H J, et al. Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes [J].J. Mater. Chem. C, 2018, 6(5): 1160-1170.
BAN X X, JIANG W, LU T T, et al. Self-host thermally activated delayed fluorescent dendrimers with flexible chains:an effective strategy for non-doped electroluminescent devices based on solution processing [J].J. Mater. Chem. C, 2016, 4(37): 8810-8816.
SUN K Y, SUN Y B, HUANG T Y, et al. Design strategy of yellow thermally activated delayed fluorescent dendrimers and their highly efficient non-doped solution-processed OLEDs with low driving voltage [J].Org. Electron., 2017, 42: 123-130.
MA Z H, WAN Y C, DONG W Y, et al. Alkoxy encapsulation of carbazole-based thermally activated delayed fluorescent dendrimers for highly efficient solution-processed organic light-emitting diodes [J].Chin. Chem. Lett., 2021, 32(2): 703-707.
LUOJ J, GONG S L, GU Y, et al. Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters [J].J. Mater. Chem. C, 2016, 4(13): 2442-2446.
BAN X X, LIN B P, JIANG W, et al. Constructing a novel dendron for a self-host blue emitter with thermally activated delayed fluorescence:solution-processed nondoped organic light-emitting diodes with bipolar charge transfer and stable color purity [J].Chem. Asian J., 2017, 12(2): 216-223.
BAN X, JIANG W, SUN K Y, et al. Self-host blue dendrimer comprised of thermally activated delayed fluorescence core and bipolar dendrons for efficient solution-processable nondoped electroluminescence [J].ACS Appl. Mater. Interfaces, 2017, 9(8): 7339-7346.
LI J, LIAO X Q, XU H X, et al. Deep-blue thermally activated delayed fluorescence dendrimers with reduced singlet-triplet energy gap for low roll-off non-doped solution-processed organic light-emitting diodes [J].Dyes Pigm., 2017, 140: 79-86.
LIAO X Q, YANG X, ZHANG R, et al. Solution-processed small-molecular white organic light-emitting diodes based on a thermally activated delayed fluorescence dendrimer [J].J. Mater. Chem. C, 2017, 5(38): 10001-10006.
LI Y F, CHEN T H, HUANG M L, et al. Tuning the twist angle of thermally activated delayed fluorescence molecules via a dendronization strategy:high-efficiency solution-processed non-doped OLEDs [J].J. Mater. Chem. C, 2017, 5(14): 3480-3487.
HUANG M L, LI Y F, WU K L, et al. Carbazole-dendronized thermally activated delayed fluorescent molecules with small singlet-triplet gaps for solution-processed organic light-emitting diodes [J].Dyes Pigm., 2018, 153: 92-98.
LI Y F, XIE G H, GONG S L, et al. Dendronized delayed fluorescence emitters for non-doped, solution-processed organic light-emitting diodes with high efficiency and low efficiency roll-off simultaneously:two parallel emissive channels [J].Chem. Sci., 2016, 7(8): 5441-5447.
MATSUOKA K, ALBRECHT K, YAMAMOTO K, et al. Mulifunctional dendritic emitter:aggregation-induced emission enhanced, thermally activated delayed fluorescent material for solution-processed multilayered organic light-emitting diodes [J].Sci. Rep., 2017, 7: 41780-1-9.
MATSUOKA K, ALBRECHT K, NAKAYAMA A, et al. Highly efficient thermally activated delayed fluorescence organic light-emitting diodes with fully solution-processed organic multilayered architecture:impact of terminal substitution on carbazole-benzophenone dendrimer and interfacial engineering [J].ACS Appl. Mater. Interfaces, 2018, 10(39): 33343-33352.
SUN K Y, CHU D, CUI Y D, et al. Near-infrared thermally activated delayed fluorescent dendrimers for the efficient non-doped solution-processed organic light-emitting diodes [J].Org. Electron., 2017, 48: 389-396.
SUN K Y, SUN Y B, LIU D, et al. CBP derivatives dendronized self-host TADF dendrimer:achieving efficient non-doped near-infrared organic light-emitting diodes [J].Dyes Pigm., 2017, 147: 436-443.
BAN X X, ZHU A Y, ZHANG T L, et al. Highly efficient all-solution-processed fluorescent organic light-emitting diodes based on a novel self-host thermally activated delayed fluorescence emitter [J].ACS Appl. Mater. Interfaces, 2017, 9(26): 21900-21908.
LIU D, TIAN W W, FENG Y L, et al. Achieving 20% external quantum efficiency for fully solution-processed organic light-emitting diodes based on thermally activated delayed fluorescence dendrimers with flexible chains [J].ACS Appl. Mater. Interfaces, 2019, 11(18): 16737-16748.
SUN K Y, SUN Y B, TIAN W W, et al. Thermally activated delayed fluorescence dendrimers with exciplex-forming dendrons for low-voltage-driving and power-efficient solution-processed OLEDs [J].J. Mater. Chem. C, 2018, 6(1): 43-49.
WANG X D, WANG S M, LV J H, et al. Through-space charge transfer hexaarylbenzene dendrimers with thermally activated delayed fluorescence and aggregation-induced emission for efficient solution-processed OLEDs [J].Chem. Sci., 2019, 10(10): 2915-2923.
SHAO S Y, HU J, WANG X D, et al. Blue thermally activated delayed fluorescence polymers with nonconjugated backbone and through-space charge transfer effect [J].J. Am. Chem. Soc., 2017, 139(49): 17739-17742.
CHEN F, HU J, WANG X D, et al. Synthesis and electroluminescent properties of through-space charge transfer polymers containing acridan donor and triarylboron acceptors [J].Front. Chem., 2019, 7: 854-1-10.
HU J, LI Q, WANG X D, et al. Developing through-space charge transfer polymers as a general approach to realize full-color and white emission with thermally activated delayed fluorescence [J].Angew. Chem. Int. Ed., 2019, 58(25): 8405-8409.
CHEN F, HU J, WANG X D, et al. Through-space charge transfer blue polymers containing acridan donor and oxygen-bridged triphenylboron acceptor for highly efficient solution-processed organic light-emitting diodes [J].Sci. China Chem., 2020, 63(8): 1112-1120.
HU J, LI Q, SHAO S Y, et al. Single white-emitting polymers with high efficiency, low roll-off, and enhanced device stability by using through-space charge transfer polymer with blue delayed fluorescence as host for yellow phosphor [J].Adv. Opt. Mater., 2020, 8(11): 1902100-1-9.
LI Q, HU J, LV J H, et al. Through-space charge-transfer polynorbornenes with fixed and controllable spatial alignment of donor and acceptor for high-efficiency blue thermally activated delayed fluorescence [J].Angew. Chem. Int. Ed., 2020, 59(45): 20174-20182.
ZHENG X J, HUANG R J, ZHONG C, et al. Achieving 21% external quantum efficiency for nondoped solution-processed sky-blue thermally activated delayed fluorescence OLEDs by means of multi-(donor/acceptor) emitter with through-space/-bond charge transfer [J].Adv. Sci., 2020, 7(7): 1902087-1-7.
0
Views
371
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution