浏览全部资源
扫码关注微信
1.宁波大学 材料科学与化学工程学院,浙江 宁波 315201
2.中国科学院 宁波材料技术与工程研究所,浙江 宁波 315201
3.中国科学院大学,北京 100049
4.中国科学院 过程工程研究所,湿法冶金清洁生产技术国家工程实验室,中科院绿色过程与工程重点实验室,北京 100190
[ "江宏涛(1995-),男,浙江平湖人,硕士研究生,2018年于南京工业大学获得学士学位,主要从事红外窗口材料的制备与研究。E-mail: jianghongtao@nimte.ac.cn" ]
[ "冯少尉(1990-),男,山东泰安人,博士研究生,2018年于上海大学获得硕士学位,主要从事透明光功能陶瓷的研究。E-mail: swfeng@ipe.ac.cn" ]
[ "陈红兵(1964-),男,陕西汉阴人,博士,教授,1997年于中国科学院上海光学精密机械研究所获得博士学位,主要从事新型闪烁材料、高性能弛豫铁电材料、非线性光学材料、闪烁陶瓷材料的单晶生长、性能表征与器件应用的研究。E-mail: chenhongbing@nbu.edu.cn" ]
Published:01 July 2021,
Received:17 March 2021,
Revised:30 March 2021,
移动端阅览
HONG-TAO JIANG, HAI-MING QIN, SHAO-WEI FENG, et al. Y2O3-MgO Composite Nano-ceramics Prepared from Core-shell Nano-powders. [J]. 发光学报, 2021, 42(7): 997-1006.
HONG-TAO JIANG, HAI-MING QIN, SHAO-WEI FENG, et al. Y2O3-MgO Composite Nano-ceramics Prepared from Core-shell Nano-powders. [J]. 发光学报, 2021, 42(7): 997-1006. DOI: 10.37188/CJL.20210095.
由于优异的光学和机械性能,Y
2
O
3
-MgO复相纳米陶瓷被认为是红外透明陶瓷的重要候选材料. 尽管如此,在近红外和中红外波段严重的光散射和不必要的吸收方面仍然存在巨大的挑战,这阻碍了该材料在极端恶劣环境中的应用. 在目前的工作中,先通过尿素沉淀法制备了Y
2
O
3
-MgO核壳结构纳米粉体,然后在放电等离子体烧结下制备了Y
2
O
3
-MgO复相纳米陶瓷. 通过热重和差示扫描量热法(TG/DSC)、X射线衍射和扫描电子显微镜分析了核壳结构纳米粉及复相纳米陶瓷. Y
2
O
3
-MgO核壳结构纳米粉体的尺寸约为250 nm,并且制备的陶瓷的平均晶粒尺寸约为360 nm. 透过率在6 μm处为57%,维氏硬度为820 HV. 粉末合成方法为复相纳米陶瓷提供了一种新颖的解决方案,可以轻松调节粒径和不同组分的比例.
Y
2
O
3
-MgO composite nano-ceramics are regarded as a significant candidate of infrared transparent ceramics on account of excellent optical and mechanical properties. Nevertheless
a huge challenge remains regarding the critical optical scattering and needless absorption in the near- and mid-infrared bands
which hinders its applications in extreme harsh environments. In present work
Y
2
O
3
-MgO core-shell structure nano-powders were prepared
via
urea precipitation method before that Y
2
O
3
-MgO composite nano-ceramics were prepared under spark plasma sintering. Thermogravimetric and differential scanning calorimetry(TG/DSC)
X-ray diffraction and scanning electron microscope were performed to analyze as prepared core-shell structure nano-powders and composite nano-ceramics. The size of Y
2
O
3
-MgO core-shell structure nano-powders is about 250 nm
and average grain size of the prepared ceramics is approximately 360 nm. The transmittance is 57% at 6 μm
and the Vickers hardness is 820 HV. The powder synthesis method accomplished in present work offers a novel solution for composite nano-ceramics
which easily regulate particle size and proportion of different components.
Y2O3-MgO复相纳米陶瓷核壳结构纳米粉体尿素沉淀法放电等离子烧结
Y2O3-MgO composite nano-ceramicscore-shell structure nano-powderurea precipitation methodspark plasma sintering
HARRIS D C. Durable 3-5 μm transmitting infrared window materials [J].Infrared Phys. Technol., 1998, 39(4): 185-201.
JAIN M, SKANDAN G, SINGHAL A, et al. Synthesis and processing of nanocrystalline powders for IR transparent windows [C].Proceedings of SPIE, Window and Dome Technologies and Materials IX, Orlando, Florida, United States, 2005:217-226.
张松涛, 王樱蕙, 张洪杰. 稀土发光材料在近红外二区成像中的应用 [J].发光学报, 2020, 41(12): 1460-1478.
ZHANG S T, WANG Y H, ZHANG H J. Lanthanide-doped fluorescence probes for NIR-Ⅱ fluorescence imaging [J].Chin. J. Lumin., 2020, 41(12): 1460-1478. (in Chinese)
刘钟馨, 宋宏伟. 银纳米链状材料的制备及近红外吸收性质 [J].发光学报, 2008, 29(6): 1067-1070.
LIU Z X, SONG H W. Synthesis of Ag nanochains and near-infrared absorption property [J].Chin. J. Lumin., 2008, 29(6): 1067-1070. (in Chinese)
刘庆生, 常晴, 李江霖, 等. LaCoO3及Ca-Fe共掺陶瓷材料的制备及红外发射率研究 [J].发光学报, 2018, 39(8): 1066-1074.
LIU Q S, CHANG Q, LI J L, et al. Preparations and infrared emissive properties of LaCoO3 and Ca-Fe Co-doped ceramics [J].Chin. J. Lumin., 2018, 39(8): 1066-1074. (in Chinese)
KRELL A, KLIMKE J, HUTZLER T. Transparent compact ceramics:inherent physical issues [J].Opt. Mater., 2009, 31(8): 1144-1150.
WANG S F, ZHANG J, LUO D W, et al. Transparent ceramics:processing, materials and applications [J].Prog. Solid State Chem., 2013, 41(1-2): 20-54.
XIE J X, MAO X J, ZHU Q Q, et al. Influence of synthesis conditions on the properties of Y2O3-MgO nanopowders and sintered nanocomposites [J].J. Eur. Ceram. Soc., 2017, 37(13): 4095-4101.
GHORBANI S, LOGHMAN-ESTARKI M R, RAZAVI R S, et al. A new method for the fabrication of MgO-Y2O3 composite nanopowder at low temperature based on bioorganic material [J].Ceram. Int., 2018, 44(3): 2814-2821.
JUNG W K, MA H J, KIM H N, et al. Transparent ceramics for visible/IR windows: processing, materials and characterization [J].Korean J. Mater. Res., 2018, 28(10): 551-563.
XIE J X, MAO X J, LI X K, et al. Influence of moisture absorption on the synthesis and properties of Y2O3-MgO nanocomposites [J].Ceram. Int., 2017, 43(1): 40-44.
WILLINGHAM C B, WAHL J M, HOGAN P K, et al. Densification of nano-yttria powders for IR window applications [C].Proceedings of SPIE, Window and Dome Technologies Ⅷ, Orlando, Florida, United States, 2003:179-188.
HARRIS D C, CAMBREA L R, JOHNSON L F, et al. Properties of an infrared-transparent MgO∶Y2O3 nanocomposite [J].J. Am. Ceram. Soc., 2013, 96(12): 3828-3835.
JIANG D T, MUKHERJEE A K. Spark plasma sintering of an infrared-transparent Y2O3-MgO nanocomposite [J].J. Am. Ceram. Soc., 2010, 93(3): 769-773.
LIU J, YAO W L, KEAR B, et al. Microstructure and IR transmittance of yttria-magnesia (50∶50 vol.%) nano-composites consolidated from agglomerated and ultrasonic horn treated nano-powders [J].Mater. Sci. Eng. B, 2010, 171(1-3): 149-154.
HUANG L, YAO W L, LIU J, et al. Spark plasma sintering and mechanical behavior of magnesia-yttria(50∶50 vol.%) nanocomposites [J].Scr. Mater., 2014, 75: 18-21.
XU S Q, LI J, KOU H M, et al. Spark plasma sintering of Y2O3-MgO composite nanopowder synthesized by the esterification sol-gel route [J].Ceram. Int., 2015, 41(2): 3312-3317.
SAFRONOVA N A, KRYZHANOVSKA O S, DOBROTVORSKA M V, et al. Influence of sintering temperature on structural and optical properties of Y2O3-MgO composite SPS ceramics [J].Ceram. Int., 2020, 46(5): 6537-6543.
LIU L H, MORITA K, SUZUKI T S, et al. Evolution of microstructure, mechanical, and optical properties of Y2O3-MgO nanocomposites fabricated by high pressure spark plasma sintering [J].J. Eur. Ceram. Soc., 2020, 40(13): 4547-4555.
MA H J, KONG J H, KIM D K. Insight into the scavenger effect of LiF on extinction of a carboxylate group for mid-infrared transparent Y2O3-MgO nanocomposite [J].Scr. Mater., 2020, 187: 37-42.
KEAR B H, SADANGI R, SHUKLA V, et al. Submicron-grained transparent yttria composites [C].Proceedings of SPIE, Window and Dome Technologies and Materials IX, Orlando, Florida, United States, 2005:227-233.
LIU L H, MORITA K, SUZUKI T S, et al. Synthesis of highly-infrared transparent Y2O3-MgO nanocomposites by colloidal technique and SPS [J].Ceram. Int., 2020, 46(9): 13669-13676.
MUOTO C K, JORDAN E H, GELL M, et al. Phase homogeneity in Y2O3-MgO nanocomposites synthesized by thermal decomposition of nitrate precursors with ammonium acetate additions [J].J. Am. Ceram. Soc., 2011, 94(12): 4207-4217.
CHEN C H, GAROFANO J K M, MUOTO C K, et al. A foaming esterification sol-gel route for the synthesis of magnesia-yttria nanocomposites [J].J. Am. Ceram. Soc., 2011, 94(2): 367-371.
IYER A, GAROFANO J K M, REUTENAUR J, et al. A sucrose-mediated Sol-Gel technique for the synthesis of MgO-Y2O3 nanocomposites [J].J. Am. Ceram. Soc., 2013, 96(2): 346-350.
GHORBANI S, RAZAVI R S, LOGHMAN-ESTARKI M R, et al. Synthesis of MgO-Y2O3 composite nanopowder with a high specific surface area by the Pechini method [J].Ceram. Int., 2017, 43(1): 345-354.
VAEZ S H, LOGHMAN-ESTARKI M R, RAZAVI R S, et al. Novel nano-dimensional cubic-spherical morphology for (Y2O3)0.5-(MgO)0.5 nanocomposite:synthesis and optical properties [J].Ceram. Int., 2018, 44(17): 21099-21106.
MA H J, JUNG W K, PARK Y, et al. A novel approach of an infrared transparent Er∶Y2O3-MgO nanocomposite for eye-safe laser ceramics [J].J. Mater. Chem. C, 2018, 6(41): 11096-11103.
MA H J, JUNG W K, BAEK C, et al. Influence of microstructure control on optical and mechanical properties of infrared transparent Y2O3-MgO nanocomposite [J].J. Eur. Ceram. Soc., 2017, 37(15): 4902-4911.
WANG J W, CHEN D Y, JORDAN E H, et al. Infrared-transparent Y2O3-MgO nanocomposites using sol-gel combustion synthesized powder [J].J. Am. Ceram. Soc., 2010, 93(11): 3535-3538.
PERMIN D A, BOLDIN M S, BELYAEV A V, et al. IR-transparent MgO-Y2O3 ceramics by self-propagating high-temperature synthesis and spark plasma sintering [J].Ceram. Int., 2020, 46(10): 15786-15792.
XU S Q, LI J, LI C Y, et al. Infrared-transparent Y2O3-MgO nanocomposites fabricated by the glucose sol-gel combustion and hot-pressing technique [J].J. Am. Ceram. Soc., 2015, 98(9): 2796-2802.
XU S Q, LI J, LI C Y, et al. Hot pressing of infrared-transparent Y2O3-MgO nanocomposites using sol-gel combustion synthesized powders [J].J. Am. Ceram. Soc., 2015, 98(3): 1019-1026.
YANG Y M, ZHAO X F, ZHU Y, et al. Transformation mechanism of magnesium and aluminum precursor solution into crystallites of layered double hydroxide [J].Chem. Mater., 2012, 24(1): 81-87.
JUNG W K, MA H J, JUNG S W, et al. Effects of calcination atmosphere on monodispersed spherical particles for highly optical transparent yttria ceramics [J].J. Am. Ceram. Soc., 2017, 100(5): 1876-1884.
FUJITA Y, TAYLOR J L, GRESHAM T L T, et al. Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation [J].Environ. Sci. Technol., 2008, 42(8): 3025-3032.
ITO T, INUMARU K, MISONO M. Epitaxially self-assembled aggregates of polyoxotungstate nanocrystallites, (NH4)3PW12O40:synthesis by homogeneous precipitation using decomposition of urea [J].Chem. Mater., 2001, 13(3): 824-831.
CHANG H Y, CHENG S Y, SHEU C I. Controlling interface characteristics by adjusting core-shell structure [J].Acta Mater., 2004, 52(18): 5389-5396.
SANG Y H, QIN H M, LIU H, et al. Partial wet route for YAG powders synthesis leading to transparent ceramic:a core-shell solid-state reaction process [J].J. Eur. Ceram. Soc., 2013, 33(13-14): 2617-2623.
KAFILI G, LOGHMAN-ESTARKI M R, MILANI M, et al. The effects of TEOS on the microstructure and phase evolutions of YAG phase by formation of alumina/yttria core-shell structures [J].J. Am. Ceram. Soc., 2017, 100(9): 4305-4316.
CHEN Y X, ZENG X Z, ZHU J T, et al. High performance and enhanced durability of thermochromic films using VO2@ZnO core-shell nanoparticles [J].ACS Appl. Mater. Interfaces, 2017, 9(33): 27784-27791.
DING H, QIN H M, FENG S W, et al. Full spectrum core-shell phosphors under ultraviolet excitation [J].Chem. Commun., 2019, 55(81): 12188-12191.
0
Views
174
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution