浏览全部资源
扫码关注微信
1.赣南师范大学化学化工学院 江西省有机药物化学重点实验室,江西 赣州 341000
2.内蒙古大学化学化工学院 内蒙古精细有机合成重点实验室,内蒙古 呼和浩特 010021
Published:01 July 2021,
Received:12 March 2021,
Revised:02 April 2021,
移动端阅览
XIAO-PENG WANG, YONG-DONG LI, JIAN-GUO WANG. Research Progress of Fluorescent Probes for Monoamine Oxidases. [J]. Chinese journal of luminescence, 2021, 42(7): 938-952.
XIAO-PENG WANG, YONG-DONG LI, JIAN-GUO WANG. Research Progress of Fluorescent Probes for Monoamine Oxidases. [J]. Chinese journal of luminescence, 2021, 42(7): 938-952. DOI: 10.37188/CJL.20210086.
单胺氧化酶(Monoamine oxidases
MAOs)是一种膜结合的线粒体酶,通过催化氧化及脱氨反应来维持神经递质和其他生物胺在生物系统中的稳态。MAOs功能障碍与许多神经和精神疾病密切相关,因此,监测MAOs的活性及表达水平,对深入理解其生理功能及相关疾病的临床诊断都具有十分重要的意义。荧光探针具有原位、无创、可实时成像等优势,是准确监测MAOs活性的一种有效方法。本文综述了近年来MAOs荧光探针的研究进展,阐述了这些荧光探针在MAOs相关疾病诊断及治疗中的应用。
Monoamine oxidases(MAOs) are a family of membrane-bound mitochondrial enzymes that play important roles in maintaining the homeostasis of neurotransmitters and other bioamines in the biological system through catalytic oxidation and deamination. The dysfunction of MAOs is closely related to many neurological and psychiatric disorders. Thus
monitoring the activity/level of MAOs is of great significance for deeply understanding their physiological functions and for clinical diagnosis of MAOs-related diseases. Fluorescent probes with the ability of
in situ
noninvasive and real-time imaging provide an effective method to accurately detect MAOs activity. In this review
the research progress of fluorescent probes for MAOs in recent years and their applications for the diagnosis and therapy of MAOs-related diseases are reviewed.
单胺氧化酶荧光探针疾病诊断抑制剂生物成像
monoamine oxidasefluorescent probesdisease diagnosisinhibitorbioimaging
BERRY M D, JUORIO A V, PATERSON I A. The functional role of monoamine oxidases A and B in the mammalian central nervous system [J].Prog. Neurobiol., 1994, 42(3): 375-391.
YOUDIM M B H, EDMONDSON D, TIPTON K F. The therapeutic potential of monoamine oxidase inhibitors [J].Nat. Rev. Neurosci., 2006, 7(4): 295-309.
EDMONDSON D E, MATTEVI A, BINDA C, et al. Structure and mechanism of monoamine oxidase [J].Curr. Med. Chem., 2004, 11(15): 1983-1993.
LAN N C, HEINZMANN C, GAL A, et al. Human monoamine oxidase A and B genes map to xp11.23 and are deleted in a patient with Norrie disease [J].Genomics, 1989, 4(4): 552-559.
MA J C, KUBOTA F, YOSHIMURA M, et al. Crystallization and preliminary crystallographic analysis of rat monoamine oxidase A complexed with clorgyline [J].Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 2): 317-319.
BORTOLATO M, GODAR S C, TAMBARO S, et al. Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO A-deficient mice [J].Neuropharmacology, 2013, 75: 223-232.
WANG C C, BILLETT E, BORCHERT A, et al. Monoamine oxidases in development [J].Cell. Mol. Life Sci., 2013, 70(4): 599-630.
MATTSON M P. Apoptosis in neurodegenerative disorders [J].Nat. Rev. Mol. Cell Biol., 2000, 1(2): 120-130.
EDMONDSON D E, BINDA C, WANG J, et al. Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases [J].Biochemistry, 2009, 48(20): 4420-4430.
CHIMENTI F, FIORAVANTI R, BOLASCO A, et al. Chalcones:a valid scaffold for monoamine oxidases inhibitors [J].J. Med. Chem., 2009, 52(9): 2818-2824.
BIALECKA M, KLODOWSKA-DUDA G, HONCZARENKO K, et al. Polymorphisms of catechol-0-methyltransferase(COMT), monoamine oxidase B(MAOB), N-acetyltransferase 2(NAT2) and cytochrome P450 2D6(CYP2D6) gene in patients with early onset of Parkinson' disease [J].Parkinsonism Relat. Disord., 2007, 13(4): 224-229.
LIAO D L, HONG C L, SHIH H L, et al. Possible association between serotonin transporter promoter region polymorphism and extremely violent crime in Chinese males [J].Neuropsychobiology, 2004, 50(4): 284-287.
CARRADORI S, SILVESTRI R. New frontiers in selective human MAO-B inhibitors [J].J. Med. Chem., 2015, 58(17): 6717-6732.
BRUNNER H G, NELEN M, BREAKEFIELD X O, et al. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A [J].Science, 1993, 262(5133): 578-580.
刘亚文, 马昊, 韩晓霞, 等. SERS光谱检测单胺类氧化酶活性 [J].光谱学与光谱分析, 2020, 40(S1): 117-118.
LIU Y W, MA H, HAN X X, et al. SERS-based study on enzyme activity of monoamine oxide [J].Spectrosc. Spec. Anal., 2020, 40(S1): 117-118. (in Chinese)
HERRAIZ T, FLORES A, FERNÁNDEZ L. Analysis of monoamine oxidase (MAO) enzymatic activity by high-performance liquid chromatography-diode array detection combined with an assay of oxidation with a peroxidase and its application to MAO inhibitors from foods and plants [J].J. Chromatogr. B, 2018, 1073: 136-144.
QIAN L H, LI L, YAO S Q. Two-photon small molecule enzymatic probes [J].Acc. Chem. Res., 2016, 49(4): 626-634.
YAMAGUCHI K, UEKI R, NONAKA H, et al. Design of chemical shift-switching19F magnetic resonance imaging probe for specific detection of human monoamine oxidase A [J].J. Am. Chem. Soc., 2011, 133(36): 14208-14211.
ZHANG J, CAMPBELL R E, TING A Y, et al. Creating new fluorescent probes for cell biology [J].Nat. Rev. Mol. Cell Biol., 2002, 3(12): 906-918.
MENG Z Y, YANG L, YAO C X, et al. Development of a naphthlimide-based fluorescent probe for imaging monoamine oxidase A in living cells and zebrafish [J].Dyes Pigments, 2020, 176: 108208.
KOCAOGLU O, CARLSON E E. Progress and prospects for small-molecule probes of bacterial imaging [J].Nat. Chem. Biol., 2016, 12(7): 472-478.
ZHOU W H, VALLEY M P, SHULTZ J, et al. New bioluminogenic substrates for monoamine oxidase assays [J].J. Am. Chem. Soc., 2006, 128(10): 3122-3123.
KOMATSU T, URANO Y. Evaluation of enzymatic activities in living systems with small-molecular fluorescent substrate probes [J].Anal. Sci., 2015, 31(4): 257-265.
LAVIS L D, CHAO T Y, RAINES R T, et al. Fluorogenic label for biomolecular imaging [J].ACS Chem. Biol., 2006, 1(4): 252-260.
SHEN W, LONG S B, YU S, et al. Design, synthesis, and evaluation of an activity-based probe for cellular imaging of monoamine oxidases [J].Med. Chem. Res., 2012, 21(11): 3858-3862.
KRYSIAK J M, KREUZER J, MACHEROUX P, et al. Activity-based probes for studying the activity of flavin-dependent oxidases and for the protein target profiling of monoamine oxidase inhibitors [J].Angew. Chem. Int. Ed., 2012, 51(28): 7035-7040.
LI L, ZHANG C W, GE J Y, et al. A small-molecule probe for selective profiling and imaging of monoamine oxidase B activities in models of Parkinson' disease [J].Angew. Chem. Int. Ed., 2015, 54(37): 10821-10825.
FLAMAND V, ZHAO H J, PEEHL D M. Targeting monoamine oxidase A in advanced prostate cancer [J].J. Cancer Res. Clin. Oncol., 2010, 136(11): 1761-1771.
BORTOLATO M, CHEN K, SHIH J C. Monoamine oxidase inactivation:from pathophysiology to therapeutics [J].Adv. Drug Deliv. Rev., 2008, 60(13-14): 1527-1533.
JOSSON S, NOMURA T, LIN J T, et al. β2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells [J].Cancer Res., 2011, 71(7): 2600-2610.
SHARMA A, ARABULA J F, KOO S, et al. Hypoxia-targeted drug delivery [J].Chem. Soc. Rev., 2019, 48(3): 771-813.
WU J B, LIN T P, GALLAGHER J D, et al. Monoamine oxidase A inhibitor-near-infrared dye conjugate reduces prostate tumor growth [J].J. Am. Chem. Soc., 2015, 137(6): 2366-2374.
WANG J G, LI C B, CHEN Q Q, et al. An easily available ratiometric reaction-based AIE probe for carbon monoxide light-up imaging [J].Anal. Chem., 2019, 91(15): 9388-9392.
GU X G, ZHAO E G, ZHAO T, et al. A mitochondrion-specific photoactivatable fluorescence turn-on AIE-based bioprobe for localization super-resolution microscope [J].Adv. Mater., 2016, 28(25): 5064-5071.
WANG J G, GU X G, ZHANG P F, et al. Ionization and anion-π+ interaction:a new strategy for structural design of aggregation-induced emission luminogens [J].J. Am. Chem. Soc., 2017, 139(46): 16974-16979.
LI Q Y, LI Y, MIN T L, et al. Time-dependent photodynamic therapy for multiple targets:a highly efficient AIE-active photosensitizer for selective bacterial elimination and cancer cell ablation [J].Angew. Chem. Int. Ed., 2020, 59(24): 9470-9477.
CHEN M, CHEN R, SHI Y, et al. Malonitrile-functionalized tetraphenylpyrazine:aggregation-induced emission, ratiometric detection of hydrogen sulfide, and mechanochromism [J].Adv. Funct. Mater., 2018, 28(6): 1704689.
CHEN M, LIU J K, LIU F, et al. Tailoring the molecular properties with isomerism effect of AIEgens [J].Adv. Funct. Mater., 2019, 29(37): 1903834.
HU F, MAO D, KENRY , et al. A light-up probe with aggregation-induced emission for real-time bio-orthogonal tumor labeling and image-guided photodynamic therapy [J].Angew. Chem. Int. Ed., 2018, 57(32): 10182-10186.
ZHAO Z, ZHANG H K, LAM J W Y, et al. Aggregation-induced emission:new vistas at the aggregate level [J].Angew. Chem. Int. Ed., 2020, 59(25): 9888-9907.
FENG H T, YUAN Y X, XIONG J B, et al. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect [J].Chem. Soc. Rev., 2018, 47(19): 7452-7476.
QI J, LI J, LIU R H, et al. Boosting fluorescence-photoacoustic-Raman properties in one fluorophore for precise cancer surgery [J].Chem, 2019, 5(10): 2657-2677.
NIU G L, ZHENG X L, ZHAO Z, et al. Functionalized acrylonitriles with aggregation-induced emission:structure tuning by simple reaction-condition variation, efficient red emission, and two-photon bioimaging [J].J. Am. Chem. Soc., 2019, 141(38): 15111-15120.
FENG H T, ZOU S M, CHEN M, et al. Tuning push-pull electronic effects of AIEgens to boost the theranostic efficacy for colon cancer [J].J. Am. Chem. Soc., 2020, 142(26): 11442-11450.
LI J, WANG J X, LI H X, et al. Supramolecular materials based on AIE luminogens (AIEgens):construction and applications [J].Chem. Soc. Rev., 2020, 49(4): 1144-1172.
XIE S, WONG A Y H, KWOK R T K, et al. Fluorogenic Ag+-tetrazolate aggregation enables efficient fluorescent biological silver staining [J].Angew. Chem. Int. Ed., 2018, 57(20): 5750-5753.
ZHOU Z B, XIE S, CHEN X, et al. Spiro-functionalized diphenylethenes:suppression of a reversible photocyclization contributes to the aggregation-induced emission effect [J].J. Am. Chem. Soc., 2019, 141(25): 9803-9807.
SHEN W, YU J J, GE J Y, et al. Light-up probes based on fluorogens with aggregation-induced emission characteristics for monoamine oxidase—an activity study in solution and in living cells [J].ACS Appl. Mater. Interfaces, 2016, 8(1): 927-935.
KIM W Y, WON M, SALIMI A, et al. Monoamine oxidase-A targeting probe for prostate cancer imaging and inhibition of metastasis [J].Chem. Commun., 2019, 55(88): 13267-13270.
ZHOU J J P, ZHONG B Y, SILVERMAN R B, et al. Direct continuous fluorometric assay for monoamine oxidase B [J].Anal. Biochem., 1996, 234(1): 9-12.
ZHOU M J, PANCHUK-VOLOSHINA N. A one-step fluorometric method for the continuous measurement of monoamine oxidase activity [J].Anal. Biochem., 1997, 253(2): 169-174.
ALBERS A E, RAWLS K A, CHANG C J, et al. Activity-based fluorescent reporters for monoamine oxidases in living cells [J].Chem. Commun., 2007(44): 4647-4649.
AW J, SHAO Q, YANG Y M, et al. Synthesis and characterization of 2-(2'-hydroxy-5'-chlorophenyl)-6-chloro-4(3H)-quinazolinone-based fluorogenic probes for cellular imaging of monoamine oxidases [J].Chem. Asian J., 2010, 5(6): 1317-1321.
PENG L H, ZHANG G X, ZHANG D Q, et al. A direct continuous fluorometric turn-on assay for monoamineoxidase B and its inhibitor-screening based on the abnormal fluorescent behavior of silole [J].Analyst, 2010, 135(7): 1779-1784.
LI X F, YU J J, ZHU Q, et al. Visualization of monoamine oxidases in living cells using “Turn-ON” fluorescence resonance energy transfer probes [J].Analyst, 2014, 139(23): 6092-6095.
LI X F, ZHANG H T, XIE Y S, et al. Fluorescent probes for detecting monoamine oxidase activity and cell imaging [J].Org. Biomol. Chem., 2014, 12(13): 2033-2036.
LI L L, LI K, LIU Y H, et al. Red emission fluorescent probes for visualization of monoamine oxidase in living cells [J].Sci. Rep., 2016, 6: 31217.
KIM D, BAIK S H, KANG S, et al. Close correlation of monoamine oxidase activity with progress of Alzheimer' disease in mice, observed by in vivo two-photon imaging [J].ACS Cent. Sci., 2016, 2(12): 967-975.
LIU Y C, TENG L L, XU C Y, et al. A “Double-Locked” and enzyme-activated molecular probe for accurate bioimaging and hepatopathy differentiation [J].Chem. Sci., 2019, 10(47): 10931-10936.
ZHANG S L, ZHAO B, YU L, et al. Piperazine multi-substituted triarylphosphine oxide compound as an instant “light-up” fluorescent probe for monoamine oxidase [J].Talanta, 2020, 209: 120559.
DONG J, ZHANG C H, ZHAO B, et al. A triarylboron based two-photon fluorescent probe for the detection of intracellular Monoamine oxidase by a reaction-induced aggregation [J].Dyes Pigments, 2020, 174: 108077.
WU X F, LI L H, SHI W, et al. Sensitive and selective ratiometric fluorescence probes for detection of intracellular endogenous monoamine oxidase A [J].Anal. Chem., 2016, 88(2): 1440-1446.
WU X F, SHI W, LI X H, et al. A strategy for specific fluorescence imaging of monoamine oxidase A in living cells [J].Angew. Chem. Int. Ed., 2017, 56(48): 15319-15323.
SHANG J Z, SHI W, LI X H, et al. Water-soluble near-infrared fluorescent probes for specific detection of monoamine oxidase A in living biosystems [J].Anal. Chem., 2021, 93(9): 4285-4290.
YANG Z M, LI W X, CHEN H, et al. Inhibitor structure-guided design and synthesis of near-infrared fluorescent probes for monoamine oxidase A (MAO-A) and its application in living cells and in vivo [J].Chem. Commun., 2019, 55(17): 2477-2480.
YANG Z M, MO Q Y, HE J M, et al. Mitochondrial-targeted and near-infrared fluorescence probe for bioimaging and evaluating monoamine oxidase A activity in hepatic fibrosis [J].ACS Sens., 2020, 5(4): 943-951.
FANG H X, ZHANG H, LI L, et al. Rational design of a two-photon fluorogenic probe for visualizing monoamine oxidase A activity in human glioma tissues [J].Angew. Chem. Int. Ed., 2020, 59(19): 7536-7541.
LONG S B, CHEN L, XIANG Y M, et al. An activity-based fluorogenic probe for sensitive and selective monoamine oxidase-B detection [J].Chem. Commun., 2012, 48(57): 7164-7166.
XIANG Y M, HE B Y, LI X F, et al. The design and synthesis of novel “turn-on” fluorescent probes to visualize monoamine oxidase-B in living cells [J].RSC Adv., 2013, 3(15): 4876-4879.
LI L, ZHANG C W, CHEN G Y J, et al. A sensitive two-photon probe to selectively detect monoamine oxidase b activity in Parkinson' disease models [J].Nat. Commun., 2014, 5: 3276.
WANG R, HAN X Y, YOU J M, et al. Ratiometric near-infrared fluorescent probe for synergistic detection of monoamine oxidase B and its contribution to oxidative stress in cell and mice aging models [J].Anal. Chem., 2018, 90(6): 4054-4061.
QIN H H, LI L L, LI K, et al. Novel strategy of constructing fluorescent probe for MAO-B via cascade reaction and its application in imaging MAO-B in human astrocyte [J].Chin. Chem. Lett., 2019, 30(1): 71-74.
0
Views
581
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution