浏览全部资源
扫码关注微信
华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510641
Published:01 June 2021,
Received:04 March 2021,
Revised:19 March 2021,
扫 描 看 全 文
Biao GUO, Lan MU, Yu LUO, et al. Ink Formulation of Quantum Dots in Ink Jet Printing. [J]. Chinese Journal of Luminescence 42(6):880-888(2021)
Biao GUO, Lan MU, Yu LUO, et al. Ink Formulation of Quantum Dots in Ink Jet Printing. [J]. Chinese Journal of Luminescence 42(6):880-888(2021) DOI: 10.37188/CJL.20210078.
设计了环己基苯与十八烯的双溶剂量子点墨水体系,研究了具有CdSe@ZnS/ZnS核/壳结构的绿光量子点(QDs)成膜规律及其发光特性。设计的高沸点、低表面张力的十八烯和低沸点、高表面张力的环己基苯所组成的双溶剂墨水体系增强了马兰戈尼流,减弱了量子点在像素坑边缘的沉积,实现了在像素坑中制备表面平整的量子点薄膜。研制的分辨率为240 PPI的倒置结构顶发射绿光量子点阵列发光器件启亮电压2.7 V,最高亮度132 510 cd/m
2
,最大外量子效率14.0%,为采用喷墨打印工艺制备高性能量子点电致发光点阵器件提供了借鉴。
In this paper
a two-solvent quantum dot ink system based on cyclohexylbenzene and octadecene was designed
and the film formation and luminescent properties of green quantum dots(QDs) with CdSe@ZnS/ZnS core/shell structure were investigated. The double solvent ink designed with high boiling point
low surface tension of octadecene and high boiling point
low surface tension of cyclohexylbenzene benzene can enhance the Marangoni effect
weaken the quantum dots accumulation on the edge of the pixel pits
and uniform pixel QDs films were achieved. The green quantum dot array light-emitting device with upside-down and top-emitting structure was fabricated with the threshold voltage of 2.7 V
a maximum brightness of 132 510 cd/m
2
and a maximum external quantum efficiency of 14.0%. The results may provide a reference for the preparation of high-performance QD-LEDs array by inkjet printing technology.
喷墨打印墨水调控量子点薄膜倒置结构量子点发光二极管
ink jet printingink formulationquantum dot filminverted structurequantum dot light-emitting diodes
YUAN Q L, WANG T, YU P L, et al. A review on the electroluminescence properties of quantum-dot light-emitting diodes [J].Org. Electron., 2021, 90:106086.
LIU Y F, DING T, CHEN X T, et al. Highly conductive alkaline-earth metal electrodes:the possibility of maintaining both low work function and surface stability for organic electronics [J].Adv. Opt. Mater., 2020, 8(15):2000206.
WOOD V, BULOVIĆ V. Colloidal quantum dot light-emitting devices [J].Nano Rev., 2010, 1(1):5202-1-7.
SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of colloidal quantum-dot light-emitting technologies [J].Nat. Photonics, 2013, 7(1):13-23.
COLVIN V L, ALIVISATOS A P, SCHLAMP M C. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J].Nature, 1994, 370(6488):354-357.
DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J].Nature, 2014, 515(7525):96-99.
WANG O Y, WANG L, LI Z H, et al. High-efficiency, deep blue ZnCdS/CdxZn1-xS/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18% [J].Nanoscale, 2018, 10(12):5650-5657.
ACHARYA K P, TITOV A, HYVONEN J, et al. High efficiency quantum dot light emitting diodes from positive aging [J].Nanoscale, 2017, 9(38):14451-14457.
CAO W R, XIANG C Y, YANG Y X, et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring [J].Nat. Commun., 2018, 9(1):2608-1-6.
YANG Y X, ZHENG Y, CAO W R, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures [J].Nat. Photonics, 2015, 9(4):259-266.
MANDERS J R, HYVONEN J, TITOV A, et al. 48-1:invited paper. High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays [J].SID Symp. Dig. Tech. Pap., 2016, 47(1):644-647.
XIANG C Y, CAO W R, YANG Y X, et al. The dawn of QLED for the FPD industry [J].Inf. Disp., 2018, 34(6):14-17.
QIAN L, YANG Y X, CAO W R, et al. 6-2:Invited paper. Key challenges towards the commercialization of quantum-dot light-emitting diodes [J].SID Symp. Dig. Tech. Pap., 2017, 48(1):55-57.
KIM L, ANIKEEVA P O, COE-SULLIVAN S A, et al. Contact printing of quantum dot light-emitting devices [J].Nano Lett., 2008, 8(12):4513-4517.
KIM T H, CHO K S, LEE E K, et al. Full-colour quantum dot displays fabricated by transfer printing [J].Nat. Photonics, 2011, 5(3):176-182.
CHO H, KWAK J, LIM J, et al. Soft contact transplanted nanocrystal quantum dots for light-emitting diodes:effect of surface energy on device performance [J].ACS Appl. Mater. Interfaces, 2015, 7(20):10828-10833.
CHOI M K, YANG J, KANG K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing [J].Nat. Commun., 2015, 6:7149-1-8.
KIM B H, NAM S, OH N, et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes [J].ACS Nano, 2016, 10(5):4920-4925.
郑华. 全溶液法制备OLED显示屏及相关研究 [D].广州:华南理工大学, 2011.
ZHENG H. OLED Displays Made Through All-solution Process and Related Studies [D].Guangzhou:South China University of Technology, 2011. (in Chinese)
刘会敏. 喷墨打印电致发光薄膜及器件制备方法的研究 [D].广州:华南理工大学, 2016.
LIU H M. Studies of Electroluminescence Films and Preparing the Light Emitting Diode Devices Based on Inkjet Printing Chnology [D].Guangzhou:South China University of Technology, 2016. (in Chinese)
郑奕娜, 郑华, 许伟, 等. 全印刷工艺制备聚合物OLED显示屏 [J].高分子通报, 2014(2):97-104.
ZHENG Y N, ZHENG H, XU W, et al. All-solution processed polymer OLED displays [J].Polym. Bull., 2014(2):97-104. (in Chinese)
刘会敏, 郑华, 许伟, 等. 喷墨打印有机电致发光显示屏的制作工艺及研究进展 [J].中国材料进展, 2014, 33(3):163-171.
LIU H M, ZHENG H, XU W, et al. Technology and development of ink-jet printing electroluminescence displays [J].Mater. China, 2014, 33(3):163-171. (in Chinese)
KIM D, JEONG S, PARK B K, et al. Direct writing of silver conductive patterns:improvement of film morphology and conductance by controlling solvent compositions [J].Appl. Phys. Lett., 2006, 89(26):264101-1-3.
DENNEULIN A, BRAS J, CARCONE F, et al. Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films [J].Carbon, 2011, 49(8):2603-2614.
JIANG C B, ZHONG Z M, LIU B Q, et al. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices [J].ACS Appl. Mater. Interfaces, 2016, 8(39):26162-26168.
LIU Y, LI F S, XU Z W, et al. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique [J].ACS Appl. Mater. Interfaces, 2017, 9(30):25506-25512.
YANG P H, ZHANG L, KANG D J, et al. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays [J].Adv. Opt. Mater., 2020, 8(1):1901429-1-7.
HAVERINEN H M, MYLLYLÄ R A, JABBOUR G E. Inkjet printing of light emitting quantum dots [J].Appl. Phys. Lett., 2009, 94(7):073108-1-3.
SUN W J, XIE L M, GUO X J, et al. Photocross-linkable hole transport materials for inkjet-printed high-efficient quantum dot light-emitting diodes [J].ACS Appl. Mater. Interfaces, 2020, 12(52):58369-58377.
HAN J, KO D, PARK M, et al. Toward high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation displays [J].J. Soc. Inf. Dis., 2016, 24(9):545-551.
NAKANISHI Y, TAKESHITA T, QU Y, et al. 58-2:Distinguished paper:active matrix QD-LED with top emission structure by UV lithography for RGB patterning [J].SID Symp. Dig. Tech. Pap., 2020, 51(1):862-865.
张娟, 焦志强, 闫华杰, 等. 微腔效应对顶发射串联蓝光有机电致发光器件性能的影响 [J].物理学报, 2020, 69(9):096104-1-15.
ZHANG J, JIAO Z Q, YAN H J, et al. Influence of microcavity effect on the performance of top emission tandem blue organic light emitting devices [J].Acta Phys. Sinica, 2020, 69(9):096104-1-15. (in Chinese)
0
Views
328
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution