Synthesis and Performance of La3Si6N11∶Ce3+ Phosphor-in-glass Films for Laser Lighting Applications
Invited Paper|更新时间:2021-10-17
|
Synthesis and Performance of La3Si6N11∶Ce3+ Phosphor-in-glass Films for Laser Lighting Applications
增强出版
Chinese Journal of LuminescenceVol. 42, Issue 10, Pages: 1482-1492(2021)
作者机构:
中国计量大学 光学与电子科技学院,浙江 杭州 310018
作者简介:
基金信息:
Preeminence Youth Science Funds of Zhejiang Province(LR19F050001);National Natural Science Foundation of China(51832005;62075203;51702339);National Key R&D Program of China(2017YFB0403100;2017YFB0403105)
MIN-HANG HUANG, QIANG-QIANG ZHU, YAO MENG, et al. Synthesis and Performance of La3Si6N11∶Ce3+ Phosphor-in-glass Films for Laser Lighting Applications. [J]. Chinese journal of luminescence, 2021, 42(10): 1482-1492.
DOI:
MIN-HANG HUANG, QIANG-QIANG ZHU, YAO MENG, et al. Synthesis and Performance of La3Si6N11∶Ce3+ Phosphor-in-glass Films for Laser Lighting Applications. [J]. Chinese journal of luminescence, 2021, 42(10): 1482-1492. DOI: 10.37188/CJL.20210076.
Synthesis and Performance of La3Si6N11∶Ce3+ Phosphor-in-glass Films for Laser Lighting Applications增强出版
The development of high-performance color converters is the key to laser lighting technology. Due to the high-power excitation from the laser lighting
the color converters must have high thermal conductivity and excellent high-temperature stability. The phosphor-in-glass(PiG) film is promising for high-power laser lighting applications due to its excellent comprehensive performance. The traditional Y
3
Al
5
O
12
∶Ce
3+
(YAG∶Ce
3+
) PiG film can hardly achieve high-quality white lighting due to its poor color rendering. Compared with YAG∶Ce
3+
nitride phosphor La
3
Si
6
N
11
∶Ce
3+
(LSN∶Ce
3+
) exhibits broader emission spectrum and better thermal quenching behavior. In this work
LSN∶Ce
3+
PiG film was prepared on a blue-pass(BP) optical film coated high thermal conductivity sapphire substrate. The effects of sintering temperature
ratio of phosphor to glass powder(PtG)
film thickness
and BP optical film on the luminescence properties of final samples were studied. With the optimized synthetic process
LSN∶Ce
3+
PiG film of excellent properties can be achieved at 800 ℃
1∶1 PtG ratio and 50 μm thickness. The sample could be excited by a blue-laser with high flux density up to 12.73 W/mm
2
and showed a luminous efficiency of 157.6 lm/W. Furthermore
the color rendering index of LSN∶Ce
3+
PiG film can reach 74.9
which is 9% higher than that of YAG∶Ce
3+
indicating great potential in high power laser lighting applications with high color rendering.
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives[J].Chem. Rev., 2018, 118(4): 1951-2009.
KIM M H, SCHUBERT M F, DAI Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes[J].Appl. Phys. Lett., 2007, 91(18): 183507-1-3.
CRAWFORD M H. LEDs for solid-state lighting: performance challenges and recent advances[J].IEEE J. Sel. Top. Quantum Electron., 2009, 15(4): 1028-1040.
JRWIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting[J].Laser Photonics Rev., 2013, 7(6): 963-993.
WANG L, LU C M, LU J N, et al. Influence of carrier screening and band filling effects on efficiency droop of ingan light emitting diodes[J].Opt. Express, 2011, 19(15): 14182-14187.
HU P, DING H, LIU Y F, et al. Recent progress of YAG∶Ce3+ for white laser diode lighting application[J].Chin. J. Lumin., 2020, 41(12): 1504-1528. (in Chinese)
YAO Q, HU P, SUN P, et al. YAG∶Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J].Adv. Mater., 2020, 32(19): 1907888-1-7.
RAUKAS M, KELSO J, ZHENG Y, et al. Ceramic phosphors for light conversion in leds[J].ECS J. Solid State Sci. Technol., 2013, 2(2): R3168-R3176.
KOLODEZNYI E S, IVUKIN I N, SEREBRYAKOVA V S, et al. Thermal analysis of phosphor containing silicone layer in high power LEDs[J].Mater. Phys. Mech., 2014, 21(3): 283-287.
ZHU Q Q, YANG P F, WANG Z Y, et al. Additive-free Y2O3∶Eu3+ red-emitting transparent ceramic with superior thermal conductivity for high-power UV LEDs and UV LDs[J].J. Eur. Ceram. Soc., 2020, 40(6): 2426-2431.
ZHU Q Q, LI S X, YUAN Q, et al. Transparent YAG∶Ce ceramic with designed low light scattering for high-power blue LED and LD applications[J].J. Eur. Ceram. Soc., 2021, 41(1): 735-740.
ZHU Q Q, MENG Y, ZHANG H, et al. YAGG∶Ce phosphor-in-YAG ceramic: an efficient green color converter suitable for high-power blue laser lighting[J].ACS Appl. Electron. Mater., 2020, 2(8): 2644-2650.
CHEN D Q, XIANG W D, LIANG X J, et al. Advances in transparent glass-ceramic phosphors for white light-emitting diodes—a review[J].J. Eur. Ceram. Soc., 2015, 35(3): 859-869.
LI S X, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting[J].Laser Photonins Rev., 2018, 12(12): 1800173-1-29.
ZHONG J S, CHEN D Q, ZHOU Y, et al. Stable and chromaticity-tunable phosphor-in-glass inorganic color converter for high-power warm white light-emitting diode[J].J. Eur. Ceram. Soc., 2016, 36(7): 1705-1713.
MOU Y, WANG H, LIANG D D, et al. Efficient and heat-conducting color converter of phosphor glass film printed on sapphire substrate for high-power white LEDs/LDs[J].J. Non-Cryst. Solids, 2019, 515: 98-105.
ZHENG P, LI S X, WANG L, et al. Unique color converter architecture enabling phosphor-in-glass(PiG) films suitable for high-power and high-luminance laser-driven white lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(17): 14930-14940.
WEI R, WANG L, ZHENG P, et al. On the luminance saturation of phosphor-in-glass(PiG) films for blue-laser-driven white lighting: effects of the phosphor content and the film thickness[J].J. Eur. Ceram. Soc., 2019, 39(5): 1909-1917.
ZHONG J Y, ZHUANG W D, XING X R, et al. Blue-shift of spectrum and enhanced luminescent properties of YAG∶Ce3+ phosphor induced by small amount of La3+ incorporation[J].J. Alloys Compd., 2016, 674: 93-97.
WOIKE M, JEITSCHKO W. Preparation and crystal structure of the nitridosilicates Ln3Si6N11 (Ln=La, Ce, Pr, Nd, Sm) and LnSi3N5 (Ln=Ce, Pr, Nd)[J].Inorg. Chem., 1995, 34(21): 5105-5108.
YUE X M, LIN H, LIN S S, et al. La3Si6N11∶Ce3+ luminescent glass ceramics applicable to high-power solid-state lighting[J].Chin. J. Lumin., 2020, 41(12): 1529-1537. (in Chinese)
YOU S H, LI S X, ZHENG P, et al. A thermally robust La3Si6N11∶Ce-in-glass film for high-brightness blue-laser-driven solid state lighting[J].Laser Photonics Rev., 2019, 13(2): 1800216-1-10.
唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M].杭州: 浙江大学出版社, 2006.
TANG J F, GU P F, LIU X, et al. Modern Optical Thin Film Technology[M].Hangzhou: Zhejiang University Press, 2006. (in Chinese)
LIU B J, DUAN W B, LI D Q, et al. Effect of annealing temperature on structure and stress properties of Ta2O5/SiO2 multilayer reflective coatings[J].Acta Phys. Sinica, 2019, 68(11): 114208-1-7. (in Chinese)
KIM S, YIE H, CHOI S, et al. Pore characteristics for improving luminous efficacy of phosphor-in-glass[J].Opt. Express, 2015, 23(24): A1499-A1511.
ZHANG R, LIN H, YU Y L, et al. A new-generation color converter for high-power white LED: transparent Ce3+∶YAG phosphor-in-glass[J].J. Eur. Ceram. Soc., 2014, 8(1): 158-164.
WANG B Z, WANG X L, WANG X Y, et al. RF-MBE growth of InAlGaN epilayer on sapphire substrate[J].Chin. J. Semicond., 2006, 27(8): 1382-1385. (in Chinese)
GAO X Y, WANG S Y, LI J, et al. Structural and optical investigation of GaN grown by met al-organic chemical vapor deposition[J].J. Korean Phys. Soc., 2004, 44(3): 765-768.
ZHENG P, LI S X, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light[J].Laser Photonics Rev., 2019, 13(10): 1900147-1-10.
Synthesis and Performance of La3Si6N11∶Ce3+ Phosphor-in-glass Films for Laser Lighting Applications
Related Articles
Fabrication and Performance Optimization of MgO-La3Si6N11∶Ce3+ Composite Phosphor-in-glass for Laser Lighting
Fundamentals of Photometry for Luminescent Materials
Application-oriented Design of Phosphors for Laser Lighting——Mini Review and Outlook
Effect of Laser Spot Regulation on Evaluation of Laser Phosphors
Related Author
Min-hang HUANG
Qiang-qiang ZHU
Yao MENG
Xiang-yu HU
Hong ZHANG
Le WANG
XU Tao
ZHU Qiangqiang
Related Institution
College of Optics and Electronic Science and Technology, China Jiliang University
School of Physics and Electronic Information, Henan Polytechnic University
College of Materials, Xiamen University
School of Physics and Electronic Information, Henan Polytechnic University
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology