浏览全部资源
扫码关注微信
湖南大学 化学化工学院, 生物与化学计量传感国家重点实验室, 湖南 长沙 410082
Published:01 March 2021,
Received:06 February 2020,
Revised:19 February 2021,
移动端阅览
ZHI-BIAO ZHOU, WEI-MING LAI, PENG YANG, et al. Organic Radical Luminophores. [J]. Chinese journal of luminescence, 2021, 42(3): 379-391.
ZHI-BIAO ZHOU, WEI-MING LAI, PENG YANG, et al. Organic Radical Luminophores. [J]. Chinese journal of luminescence, 2021, 42(3): 379-391. DOI: 10.37188/CJL.20210054.
有机自由基由于存在未配对或弱成键电子,因而具有独特的基态开壳电子结构。这类开壳电子结构的分子体系可展示出特殊的物理性质,如近红外吸收、非线性光学响应、可逆电子氧化还原、磁学性质等,有望成为下一代光电磁信息功能材料。然而,绝大多数自由基在光激发态下以非辐射方式释放能量,从而表现为弱发光或不发光。近年来,以三芳基甲基自由基衍生物为代表的双线态自由基发光体逐渐引起研究者的关注,其红光发射的荧光量子产率可达到90%以上,且成功地应用于有机电致发光器件(OLED)。自由基发光体是在基态和激发态均具备自由基特征的新型分子体系,其分子结构设计与发光性质调控是该领域的关键难题。在已报道的仅有的少数发光自由基的基础上,人们更多地期待获得性能优异、可选择性调色的多种类发光自由基及其作为功能材料的潜在应用。本文总结了发光自由基的分子结构、物理性质和构效关系,以及激发态发光机制与自由基非辐射跃迁抑制机理等,讨论了目前的研究现状和未来的研究挑战。
Organic radicals have unique ground state open-shell electronic structures
arising from the presence of unpaired or weakly bonded electrons. Such molecular systems generally exhibit special physical properties
such as near-infrared absorption
nonlinear optical response
reversible redox
magnetic properties and
etc
.
and may become the next generation of optoelectronic and magnetic materials. However
among organic radicals
the majority of them have strong non-radiative channels to release photoexcited energy
and thus display extremely weak or no luminescence. In recent years
doublet radicals
exemplified by derivatives of triarylmethyl radical
show attractive luminescent property
and their red emission with fluorescence quantum yield even up to 90% are impressive
and they are promising material candidates for application in organic light-emitting diodes(OLEDs). Radical luminophore is defined as a new type of luminescent chromophore with open-shell character at both the ground state and excited state. The difficulties in radical luminohpore are how to design new radicals and to tune their luminescent properties. Importantly
more radical luminophores with selectivity of color displays and high luminescence efficiencies are highly desirable in this research area. For this
we give a short review of the radical luminophores relative to molecular structures
physical properties and the relationship between structure and property
together with furthermore discussion of excited-state luminescence mechanism and suppression of non-radiative transition
as well as expects and challenges in future.
自由基发光体构效关系激发态调控发光效率聚集态
radical luminophorestructure-property relationshipmodulation of excited-stateluminescence efficiencyaggregation state
GOMBERG M. An instance of trivalent carbon: triphenylmethyl [J].J. Am. Chem. Soc., 1900,22(11):757-771.
RATERA I, VECIANA J. Playing with organic radicals as building blocks for functional molecular materials [J].Chem. Soc. Rev., 2011,41(1):303-349.
ⅡGREEN J A, SINGER L A. Fluorescence quenching by the stable free radical di-t-butylnitroxide [J].J. Chem. Phys., 1973,58(7):2690-2695.
EVANS D F. Magnetic perturbation of singlet-triplet transitions. Part Ⅱ [J].J. Chem. Soc., 1957,3885-3888.
ⅡGREEN J A, SINGER L A. Di-tert-butyl nitroxide as a convenient probe for excited singlet states. Pyrene luminescence [J].J. Am. Chem. Soc., 1974,96(9):2730-2733.
HOYTINK G J. Intermolecular electron exchange [J].Acc. Chem. Res., 1969,2(4):114-120.
KUZMIN V A, TATIKOLOV A S. Formation of triplets of aromatic hydrocarbons on quenching of excited singlet states by nitroxyl radicals [J].Chem. Phys. Lett., 1977,51(1):45-47.
GREEN S A, SIMPSON D J, ZHOU G, et al. Intramolecular quenching of excited singlet states by stable nitroxyl radicals [J].J. Am. Chem. Soc., 1990,112(20):7337-7346.
CALDWELL R A, SCHWERZE R E. Quenching of excited states by stable free radicals. Effect of di-tert-butyl nitroxide on stilbene and naphthalene triplets [J].J. Am. Chem. Soc., 1972,94(3):1035-1037.
SCHWERZEL R E, CALDWELL R A. Quenching of excited states by stable free radicals.Ⅱ. Mechanism of triplet quenching by di-tert-butyl nitroxide [J].J. Am. Chem. Soc., 1973,95(5):1382-1389.
CHATTOPADHYAY S K, DAS P K, HUG G L. Photoprocesses in diphenylpolyenes. 2. Excited-state interactions with stable free radicals [J].J. Am. Chem. Soc., 1983,105(20):6205-6210.
BUCHACHENKO A L, BERDINSKY V L. Electronspin catalysis [J].Chem. Rev., 2002,102(3):603-612.
TEKI Y, MIYAMOTO S, NAKATSUJI M, et al. π-topology and spin alignment utilizing the excited molecular field:observation of the excited high-spin quartet (S=3/2) and quintet (S=2) states on purely organic π-conjugated spin systems [J].J. Am. Chem. Soc., 2001,123(2):294-305.
GAMERO V, VELASCO D, LATORRE S, et al. [4-(N-Carbazolyl)-2,6-dichlorophenyl]bis(2,4,6-trichlorophenyl)methyl radical an efficient red light-emitting paramagnetic molecule [J].Tetrahedron Lett., 2006,47(14):2305-2309.
VELASCO D, CASTELLANOS S, LÓPEZ M, et al. Red organic light-emitting radical adducts of carbazole and tris(2,4,6-trichlorotriphenyl)methyl radical that exhibit high thermal stability and electrochemical amphotericity [J].J. Org. Chem., 2007,72(20):7523-7532.
HECKMANN A, DÜMMLER S, PAULI J, et al. Highly fluorescent open-shell NIR dyes:the time-dependence of back electron transfer in triarylamine-perchlorotriphenylmethyl radicals [J].J. Phys. Chem. C, 2009,113(49):20958-20966.
HATTORI Y, KUSAMOTO T, NISHIHARA H. Luminescence,stability,and proton response of an open-shell (3,5-Dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical [J].Angew. Chem. Int. Ed., 2014,53(44):11845-11848.
PENGQ M, OBOLDA A, ZHANG M, et al. Organic light-emitting diodes using a neutral π radical as emitter:the emission from a doublet [J].Angew. Chem. Int. Ed., 2015,54(24):7091-7095.
KUSAMOTO T, KIMURA S, OGINO Y, et al. Modulated luminescence of a stable open-shell triarylmethyl radical:effects of chemical modification on its electronic structure and physical properties [J].Chem. Eur. J., 2016,22(49):17725-17733.
OBOLDA A, AI X, ZHANG M, et al. Up to 100% formation ratio of doublet exciton in deep-red organic light-emitting diodes based on neutral π-radical [J].ACS Appl. Mater. Interfaces, 2016,8(51):35472-35478.
GAO Y C, XU W, MA H W, et al. Novel luminescent benzimidazole-substituent tris(2,4,6-trichlorophenyl)methyl radicals:photophysics,stability,and highly efficient red-orange electroluminescence [J].Chem. Mater., 2017,29(16):6733-6739.
HAN J L, JIANG Y Q, OBOLDA A, et al. Doublet-triplet energy transfer-dominated photon upconversion [J].J. Phys. Chem. Lett., 2017,8(23):5865-5870.
BLASI D, NIKOLAIDOU D M, TERENZIANI F, et al. Excimers from stable and persistent supramolecular radical-pairs in red/NIR-emitting organic nanoparticles and polymeric films [J].Phys. Chem. Chem. Phys., 2017,19(13):9313-9319.
AI X, CHEN Y X, LI F T, et al. A stable room-temperature luminescent biphenylmethyl radical [J].Angew. Chem. Int. Ed., 2018,57(11):2869-2873.
KIMURA S, KUSAMOTO T, KIMURA S, et al. Magnetoluminescence in a photostable,brightly luminescent organic radical in a rigid environment [J].Angew. Chem. Int. Ed., 2018,57(39):12711-12715.
KIMURA S, TANUSHI A, KUSAMOTO T, et al. A luminescent organic radical with two pyridyl groups:high photostability and dual stimuli-responsive properties,with theoretical analyses of photophysical processes [J].Chem. Sci., 2018,9(7):1996-2007.
AI X, EVANS E W, DONG S Z, et al. Efficient radical-based light-emitting diodes with doublet emission [J].Nature, 2018,563(22):536-540.
GUO H Q, PENG Q M, CHEN X K, et al. High stability and luminescence efficiency in donor-acceptor neutral radicals not following the Aufbau principle [J].Nat. Mater., 2019,18(9):977-984.
FOX M A, GAILLARD E, CHEN C C. Photochemistry of stable free radicals:the photolysis of perchlorotriphenylmethyl radicals [J].J. Am. Chem. Soc., 1987,109(23):7088-7094.
ARMET O, VECIANA J, ROVIRA C, et al. Inert carbon free radicals. 8. Polychlorotriphenylmethyl radicals:synthesis,structure,and spin-density distribution [J].J. Phys. Chem., 1987,91(22):5608-5616.
BALLESTER M. Synthesis and isolation of a perchlorotriphenylcarbonium salt [J].Tetrahedron Lett., 1970,11(42):3615-3618.
FAJARÍ L, PAPOULAR R, REIG M, et al. Charge transfer states in stable neutral and oxidized radical adducts from carbazole derivatives [J].J. Org. Chem., 2014,79(4):1771-1777.
ABDURAHMAN A, PENG Q M, ABLIKIM O, et al. A radical polymer with efficient deep-red luminescence in the condensed state [J].Mater. Horiz., 2019,6(6):1265-1270.
HATTORI Y, KUSAMOTO T, NISHIHARA H. Enhanced luminescent properties of an open-shell (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical by coordination to gold [J].Angew. Chem. Int. Ed., 2015,54(12):3731-3734.
HATTORI Y, KUSAMOTO T, SATO T, et al. Synergistic luminescence enhancement of a pyridyl-substituted triarylmethyl radical based on fluorine substitution and coordination to gold [J].Chem. Commun., 2016,52(91):13393-13396.
HATTORI Y, KUSAMOTO T, NISHIHARA H. Highly photostable luminescent open-shell (3,5-dihalo-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radicals:significant effects of halogen atoms on their photophysical and photochemical properties [J].RSC Adv., 2015,5(79):64802-64805.
CUI Z Y, YE S F, WANG L, et al. Radical-based organic light-emitting diodes with maximum external quantum efficiency of 10.6% [J].J. Phys. Chem. Lett., 2018,9(22):6644-6648.
SUMI T, GOSEKI R, OTSUKA H. Tetraarylsuccinonitriles as mechanochromophores to generate highly stable luminescent carbon-centered radicals [J].Chem. Commun., 2017,53(87):11885-11888.
BELDJOUDI Y, NASCIMENTO M A, CHO Y J, et al. Multifunctional dithiadiazolyl radicals:fluorescence,electroluminescence,and photoconducting behavior in pyren-1′-yl-dithiadiazolyl [J].J. Am. Chem. Soc., 2018,140(20):6260-6270.
BELDJOUDI Y, ARAUZO A, CAMPO J, et al. Structural,magnetic,and optical studies of the polymorphic 9′-anthracenyl dithiadiazolyl radical [J].J. Am. Chem. Soc., 2019,141(17):6875-6889.
IMRAN M, WEHRMANN C M, CHEN M S, et al. Open-shell effects on optoelectronic properties:antiambipolar charge transport and anti-Kasha doublet emission from a N-substituted bisphenalenyl [J].J. Am. Chem. Soc., 2020,142(1):38-43.
CUI Z Y, ABDURAHMAN A, AI X, et al. Stable luminescent radicals and radical-based LEDs with doublet emission [J].CCS Chem., 2020,2(4):1129-1145.
ABDURAHMAN A, HELE TJ H, GU Q Y, et al. Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes [J].Nat. Mater., 2020,19(11):1224-1229.
唐本忠. 反构造原理策略实现高稳定有机发光自由基 [J].高等学校化学学报, 2019,40(9):1793-1794.
TANG B Z. Non-aufbau principle to achieve high stability organic luminescence radicals [J].Chem. J. Chin. Univ., 2019,40(9):1793-1794. (in Chinese)
CHO E, COROPCEANU V, BRÉDAS J L, et al. Organic neutral radical emitters:impact of chemical substitution and electronic-state hybridization on the luminescence properties [J].J. Am. Chem. Soc., 2020,142(41):17782-17786.
LIU C H, HAMZEHPOOR E, SAKAI O Y, JADHAV T, et al. 90% quantum yield pure-red doublet emission from stable,colorless,iodinated triphenylmethane solid [J].Angew. Chem. Int. Ed., 2020,59(51):23030-23034.
TEKI Y. Excited-state dynamics of non-luminescent and luminescent p-radicals [J].Chem. Eur. J., 2020,26(5):980-996.
0
Views
814
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution