浏览全部资源
扫码关注微信
1.中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室,上海 200050
2.华中师范大学,湖北 武汉 430079
3.上海应用技术大学,上海 201418
Published:01 July 2021,
Received:01 February 2021,
Revised:14 February 2021,
扫 描 看 全 文
Tong WU, Ling WANG, Huan HE, et al. Research Progress of Lu3Al5O12-based Scintillation Ceramics. [J]. Chinese Journal of Luminescence 42(7):917-937(2021)
Tong WU, Ling WANG, Huan HE, et al. Research Progress of Lu3Al5O12-based Scintillation Ceramics. [J]. Chinese Journal of Luminescence 42(7):917-937(2021) DOI: 10.37188/CJL.20210049.
介绍了近年来国内外镥铝石榴石(Lu
3
Al
5
O
12
LuAG)基闪烁陶瓷的研究进展,总结了LuAG的晶体结构和物化性能、LuAG基闪烁陶瓷的制备方法和结构缺陷研究、组分调控和材料计算在设计新型LuAG基闪烁材料方面的创新成果等。其中稀土Ce
3+
和Pr
3+
掺杂的LuAG闪烁陶瓷研究进展较快,部分组分已经实现闪烁性能优于同类单晶,并向器件化推进。Ce∶LuAG陶瓷因其高光效和优异的抗辐照损伤性能,被列为高能物理新一代电磁量能器的备选材料;Pr∶LuAG具有快衰减时间和高温荧光热稳定性,在核医学PET成像和油井勘测等领域显示了应用潜力。基于缺陷工程和能带工程的思想,通过Mg
2+
、Y
3+
等掺杂调控基质组分,Ce∶LuAG和Pr∶LuAG陶瓷在闪烁性能上都获得突破性提升;基于透明陶瓷技术,高光学质量的LuAG基闪烁陶瓷将具有重要的应用前景和发展潜力。
Recent research progress of lutetium aluminum garnet(Lu
3
Al
5
O
12
LuAG) based scintillation ceramics is introduced. The crystal structure
physical and chemical properties
fabrication methods and structural defects of LuAG-based scintillation ceramics
as well as the novel results in the design of LuAG-based scintillation materials through composition engineering and theory calculation
are summarized in detail. Among those
fruitful progress have been made in Ce
3+
and Pr
3+
doped LuAG scintillation ceramics
better scintillation properties than their single crystal analogous have been achieved in some ceramic components. The devices assembling were developed correspondingly. Herein
Ce∶LuAG ceramics are considered as the candidate materials for the new generation of electromagnetic calorimeters in high energy physics field due to their high luminescence efficiency and excellent radiation hardness performance. Pr∶LuAG has fast decay time and high temperature luminescence thermal stability
showing potential applications in nuclear medicine PET imaging and well-logging. Based on the idea of defect engineering and band gap engineering
breakthrough has been achieved on their scintillation properties improvement through Mg
2+
and Y
3+
co-doping. Based on transparent ceramic technology
LuAG-based scintillation ceramics with high optical quality show important application prospect and development potential.
Lu3Al5O12(LuAG)闪烁陶瓷缺陷Ce∶LuAG陶瓷Pr∶LuAG陶瓷
Lu3Al5O12(LuAG)scintillation ceramicsdefectsCe∶LuAG ceramicsPr∶LuAG ceramics
BLASSE G. Scintillator materials [J].Chem. Mater., 1994, 6(9): 1465-1475.
HOFSTADTER R. Alkali halide scintillation counters [J].Phys. Rev., 1948, 74(1): 100-101.
NESTOR O H, HUANG C Y. Bismuth germanate:a high-Z gamma-ray and charged particle detector [J].IEEE Trans. Nucl. Sci., 1975, 22(1): 68-71.
BARYSHEVSKY V G, KORZHIK M V, MOROZ V I, et al. Single crystals of tungsten compounds as promising materials for the total absorption detectors of the e.m. calorimeters [J].Nucl. Instrum. Methods Phys. Res. Sect. A:Accel. Spectrom. Detect. Assoc. Equip., 1992, 322(2): 231-234.
MELCHER C L, SCHWEITZER J S. Cerium-doped lutetium oxyorthosilicate:a fast, efficient new scintillator [J].IEEE Trans. Nucl. Sci., 1992, 39(4): 502-505.
CUSANO D A, GRESKOVICH C D, DIBIANCA F A. Rare-earth-doped yttria-gadolinia ceramic scintillators:US, 4421671A [P].1983-12-20.
GRESKOVICH C, DUCLOS S. Ceramic scintillators [J].Annu. Rev. Mater. Sci., 1997, 27: 69-88.
VAN EIJK C W E, ANDRIESSEN J, DORENBOS P, et al. Ce3+ doped inorganic scintillators [J].Nucl. Instrum. Methods Phys. Res. Sect. A:Accel. Spectrom. Detect. Assoc. Equip., 1994, 348(2-3): 546-550.
LEMPICKI A, RANDLES M H, WISNIEWSKI D, et al. LuAlO3∶Ce and other aluminate scintillators [J].IEEE Trans. Nucl. Sci., 1995, 42(4): 280-284.
NIKL M. Wide band gap scintillation materials:progress in the technology and material understanding [J].Phys. Status Solidi A, 2000, 178(2): 595-620.
NIKL M, OGINO H, KRASNIKOV A, et al. Photo- and radioluminescence of Pr-doped Lu3Al5O12 single crystal [J].Phys. Status Solidi A, 2005, 202(1): R4-R6.
BELOGUROV S, BRESSI G, CARUGNO G, et al. Properties of Yb-doped scintillators∶YAG, YAP, LuAG [J].Nucl. Instrum. Methods Phys. Res. Sect. A:Accel. Spectrom. Detect. Assoc. Equip., 2004, 516(1): 58-67.
NIKL M, PEJCHAL J, MIHOKOVA E, et al. Antisite defect-free Lu3(GaxAl1-x)5O12∶Pr scintillator [J].Appl. Phys. Lett., 2006, 88(14): 141916-1-3.
SUGIYAMA M, FUJIMOTO Y, YANAGIDA T, et al. Crystal growth and scintillation properties of Nd-doped Lu3Al5O12 single crystals with different Nd concentrations [J].Opt. Mater., 2011, 33(6): 905-908.
MARES J A, NIKL M, BEITLEROVA A, et al. Scintillation Properties of Ce3+- and Pr3+ -doped LuAG, YAG and mixed LuxY1-xAG garnet crystals [J].IEEE Trans. Nucl. Sci., 2012, 59(5): 2120-2125.
BARTOSIEWICZ K, HORIAI T, YAMAJI A, et al. Effects of La doping on the crystal growth, phase stability and scintillation properties of Lu3Al5O12 single crystals [J].Mater. Sci. Eng.:B, 2020, 261: 114677.
KAMADA K, NIKL M, KUROSAWA S, et al. Co-doping effects on luminescence and scintillation properties of Ce doped Lu3Al5O12 scintillator [J].Nucl. Instrum. Methods Phys. Res. Sect. A:Accel. Spectrom. Detect. Assoc. Equip., 2015, 782: 9-12.
NIKL M, YOSHIKAWA A, KAMADA K, et al. Development of LuAG-based scintillator crystals—a review [J].Prog. Cryst. Growth Charact. Mater., 2013, 59(2): 47-72.
PETROSYAN A G, OVANESYAN K L, SARGSYAN R V, et al. Bridgman growth and site occupation in LuAG∶Ce scintillator crystals [J].J. Cryst. Growth, 2010, 312(21): 3136-3142.
DROZDOWSKI W, BRYLEW K, WOJTOWICZ A J, et al. 33 000 photons per MeV from mixed (Lu0.75Y0.25)3Al5O12∶Pr scintillator crystals [J].Opt. Mater. Express, 2014, 4(6): 1207-1212.
DROZDOWSKI W, BRYLEW K, WITKOWSKI M E, et al. Effect of Lu-to-Y ratio and Mo coactivation on scintillation properties of LuYAG∶Pr and LuAG∶Pr, Mo crystals [J].Opt. Mater., 2016, 59: 107-114.
SPEIGHT J G. Lange's Handbook of Chemistry[M].16th ed. Laramie, Wyoming: CD & W Inc., 1972.
冯锡淇. YAG和LuAG晶体中的反位缺陷 [J].无机材料学报, 2010, 25(8): 785-794.
FENG X Q. Anti-site defects in YAG and LuAG crystals [J].J. Inorg. Mater., 2010, 25(8): 785-794. (in Chinese)
NIKL M, VEDDA A, FASOLI M, et al. Shallow traps and radiative recombination processes in Lu3Al5O12∶Ce single crystal scintillator [J].Phys. Rev. B, 2007, 76(19): 195121-1-8.
NIKL M, MIHOKOVA E, PEJCHAL J, et al. The antisite LuAl defect-related trap in Lu3Al5O12∶Ce single crystal [J].Phys. Status Solidi B, 2005, 242(14): R119-R121.
IKESUE A, KINOSHITA T, KAMATA K, et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers [J].J. Am. Ceram. Soc., 1995, 78(4): 1033-1040.
石云, 潘裕柏, 冯锡淇, 等. Ce3+掺杂YAG透明陶瓷的制备与光性能研究 [J].无机材料学报, 2010, 25(2): 125-128.
SHI Y, PAN Y B, FENG X Q, et al. Fabrication and luminescence study of Ce3+ doped YAG transparent ceramics [J].J. Inorg. Mater., 2010, 25(2): 125-128. (in Chinese)
DORENBOS P. Fundamental limitations in the performance of Ce3+-, Pr3+-, and Eu2+-activated scintillators [J].IEEE Trans. Nucl. Sci., 2010, 57(3): 1162-1167.
OGIEGŁO J M, KATELNIKOVAS A, ZYCH A, et al. Luminescence and luminescence quenching in Gd3(Ga, Al)5O12 scintillators doped with Ce3+ [J].J. Phys. Chem. A, 2013, 117(12): 2479-2484.
ZHU R Y. Ultrafast and radiation hard inorganic scintillators for future HEP experiments [J].J. Phys.: Conf. Ser., 2019, 1162: 012022-1-25.
沈毅强, 石云, 潘裕柏, 等. 高光输出快衰减Pr∶Lu3Al5O12闪烁陶瓷的制备和成像 [J].无机材料学报, 2014, 29(5): 534-538.
SHEN Y Q, SHI Y, PAN Y B, et al. Fabrication and 2D-mapping of Pr∶Lu3Al5O12 scintillator ceramics with high light yield and fast decay time [J].J. Inorg. Mater., 2014, 29(5): 534-538. (in Chinese)
NIKL M, LAGUTA V V, VEDDA A. Complex oxide scintillators:material defects and scintillation performance [J].Phys. Status Solidi B, 2008, 245(9): 1701-1722.
李会利. 铈掺杂镥铝石榴石透明陶瓷的制备及其闪烁性能研究 [D].上海: 中国科学院上海硅酸盐研究所, 2006.
LI H L. Preparation and Scintillating Properties of Cerium-doped Lutetium Aluminum Garnet Optically Transparent Ceramics [D].Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2006. (in Chinese)
YANAGIDA T, FUJIMOTO Y, KOSHIMIZU M, et al. Positive hysteresis of Ce-doped GAGG scintillator [J].Opt. Mater., 2014, 36(12): 2016-2019.
中国科学院上海硅酸盐研究所. 闪烁材料的微秒闪烁余辉测量装置:中国, 103674981A [P].2014-03-26.
Shanghai Institute of Ceramics, Chinese Academy of Sciences. Microsecond scintillation afterglow measuring device for scintillating material:CN, 103674981A [P].2014-03-26. (in Chinese)
LIU S P, MARES J A, FENG X Q, et al. Towards bright and fast Lu3Al5O12∶Ce, Mg optical ceramics scintillators [J].Adv. Opt. Mater., 2016, 4(5): 731-739.
VILLARS P. Lu3Al5O12 crystal structure:datasheet from “PAULING FILE multinaries edition - 2012” in Springer Materials [EB/OL].2021-02-01. https://materials.springer.com/isp/crystallographic/docs/sd_0309602https://materials.springer.com/isp/crystallographic/docs/sd_0309602.
LI H L, LIU X J, HUANG L P. Fabrication of transparent cerium-doped lutetium aluminum garnet (LuAG∶Ce) ceramics by a solid-state reaction method [J].J. Am. Ceram. Soc., 2005, 88(11): 3226-3228.
LI J L, XU J, SHI Y, et al. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce∶LuAG) transparent ceramics by solid-state reaction method [J].Mater. Res. Bull., 2014, 55: 161-167.
LIU S P, FENG X Q, MARES J A, et al. Optical, luminescence and scintillation characteristics of non-stoichiometric LuAG∶Ce ceramics [J].J. Lumin., 2016, 169: 72-77.
HU Z W, CAO M Q, CHEN H H, et al. The role of air annealing on the optical and scintillation properties of Mg co-doped Pr∶LuAG transparent ceramics [J].Opt. Mater., 2017, 72: 201-207.
LI H L, LIU X J, HUANG L P. Synthesis of nanocrystalline lutetium aluminum garnet powders by co-precipitation method [J].Ceram. Int., 2006, 32(3): 309-312.
LI H L, LIU X J, XIE R J, et al. Cerium-doped lutetium aluminum garnet phosphors and optically transparent ceramics prepared from powder precursors by a urea homogeneous precipitation method [J].Jpn. J. Appl. Phys., 2008, 47(3R): 1657-1661.
XU J, FAN L C, SHI Y, et al. Effects of Ce3+ doping concentrations on microstructure and luminescent properties of Ce3+∶Lu3Al5O12 (Ce∶LuAG) transparent ceramics [J].Opt. Mater., 2014, 36(12): 1954-1958.
XU J, SHI Y, XIE J J, et al. Fabrication, microstructure, and luminescent properties of Ce3+-doped Lu3Al5O12 (Ce∶LuAG) transparent ceramics by low-temperature vacuum sintering [J].J. Am. Ceram. Soc., 2013, 96(6): 1930-1936.
LI H L, LIU X J, HUANG L P. Luminescent properties of LuAG∶Ce phosphors with different Ce contents prepared by a sol-gel combustion method [J].Opt. Mater., 2007, 29(9): 1138-1142.
XING L, QU L H, HE Q, et al. Solvothermal fabrication and luminescent properties of nano LuAG∶Ce phosphors [J].Micro Nano Lett., 2014, 9(1): 60-63.
WANG L X, YIN M, GUO C X, et al. Synthesis and luminescent properties of Ce3+ doped LuAG nano-sized powders by mixed solvo-thermal method [J].J. Rare Earths, 2010, 28(1): 16-21.
LIU S P, FENG X Q, SHI Y, et al. Fabrication, microstructure and properties of highly transparent Ce3+∶Lu3Al5O12 scintillator ceramics [J].Opt. Mater., 2014, 36(12): 1973-1977.
SHI Y, ZHAO Y, CAO M Q, et al. Dense Ce3+ doped Lu3A15O12 ceramic scintillators with low sintering adds:doping content effect, luminescence characterization and proton irradiation hardness [J].J. Lumin., 2020, 225: 117336.
ZHANG Y L, HU S, WANG Z J, et al. Pore-existing Lu3Al5O12∶Ce ceramic phosphor:an efficient green color converter for laser light source [J].J. Lumin., 2018, 197: 331-334.
MA W Q, JIANG B X, CHEN S L, et al. A fast lutetium aluminum garnet scintillation ceramic with Ce3+ and Ca2+ co-dopants [J].J. Lumin., 2019, 216: 116728.
FUJIMOTO Y, YANAGIDA T, YAGI H, et al. Comparative study of intrinsic luminescence in undoped transparent ceramic and single crystal garnet scintillators [J].Opt. Mater., 2014, 36(12): 1926-1929.
TROFIMOV A A, JACOBSOHN L G. Radioluminescence of Lu3Al5O12∶Ce single crystal and transparent polycrystalline ceramic at high temperatures [J].Ceram. Int., 2020, 46(16): 26335-26338.
CHEREPY N J, KUNTZ J D, TILLOTSON T M, et al. Cerium-doped single crystal and transparent ceramic lutetium aluminum garnet scintillators [J].Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip., 2007, 579(1): 38-41.
TRET'YAK E V, SHEVCHENKO G P, KORJIK M V. Formation of high-density scintillation ceramic from LuAG∶Ce + Lu2O3 powders obtained by co-precipitation method [J].Opt. Mater., 2015, 46: 596-600.
ZHAO J B, WANG Z F, WANG C N, et al. Synthesis and luminescent properties of Pr-doped Lu3Al5O12 translucent ceramic [J].J. Rare Earths, 2009, 27(3): 376-380.
SHI Y, FENG X Q, PAN Y B, et al. Fabrication and photoluminescence characteristic of Pr∶LuAG scintillator ceramics [J].Radiat. Meas., 2010, 45(3-6): 457-460.
SHI Y, NIKL M, FENG X Q, et al. Microstructure, optical, and scintillation characteristics of Pr3+ doped Lu3Al5O12 optical ceramics [J].J. Appl. Phys., 2011, 109(1): 013522-1-7.
YANAGIDA T, FUJIMOTO Y, KAMADA K, et al. Scintillation properties of transparent ceramic Pr∶LuAG for different Pr concentration [J].IEEE Trans. Nucl. Sci., 2012, 59(5): 2146-2151.
PAPYNOV E K, SHICHALIN O O, MAYOROV V Y, et al. Spark plasma sintering as a high-tech approach in a new generation of synthesis of nanostructured functional ceramics [J].Nanotechnol. Russ., 2017, 12(1-2): 49-61.
AN L Q, ITO A, GOTO T. Effect of sintering temperature on the transparency and mechanical properties of lutetium aluminum garnet fabricated by spark plasma sintering [J].J. Eur. Ceram. Soc., 2012, 32(12): 3097-3102.
SUGIYAMA M, YANAGIDA T, FUJIMOTO Y, et al. Basic study of Eu2+-doped garnet ceramic scintillator produced by spark plasma sintering [J].Opt. Mater., 2012, 35(2): 222-226.
KUMAR S A, SENTHILSELVAN J. Fabrication and characterization of Spark plasma sintered Ce∶LuAG ceramic for scintillation application [C].DAE Solid State Physics Symposium 2015, Noida, India, 2016, 1731:080059.
PEJCHAL J, BABIN V, BEITLEROVA A, et al. Luminescence and scintillation properties of Lu3Al5O12 nanoceramics sintered by SPS method [J].Opt. Mater., 2016, 53: 54-63.
XU J, WANG J, GONG Y X, et al. Investigation of an LuAG∶Ce translucent ceramic synthesized via spark plasma sintering:towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting [J].J. Eur. Ceram. Soc., 2018, 38(1): 343-347.
KHARIEKY A A, SARAEE K R E, STREK W. Investigation of the scintillation properties of LuAG∶Tb3+ nanocrystalline powders and nanoceramic prepared by SPS method [J].Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip., 2018, 877: 331-338.
WITKOWSKI M E, ZHOU D, DROZDOWSKI W, et al. Scintillation properties and effect of thermal annealing in Lu3Al5O12∶Ce and Lu3Al5O12∶Pr ceramics [J].Opt. Mater., 2018, 85: 230-237.
周鼎, 施鹰, 范灵聪, 等. Ce, Pr离子双掺LuAG透明陶瓷制备及光学性能 [J].无机材料学报, 2016, 31(10): 1099-1102.
ZHOU D, SHI Y, FAN L C et al. Fabrication and optical properties of Ce, Pr co-doped LuAG transparent ceramics [J].J. Inorg. Mater., 2016, 31(10): 1099-1102. (in Chinese)
ZHOU D, SHI Y, XIE J J, et al. Laser grade Yb∶LuAG transparent ceramic prepared by nanocrystalline pressure-less sintering in reducing H2 [J].Opt. Mater. Express, 2017, 7(4): 1274-1280.
CHEN X P, HU Z W, DAI J W, et al. The influence of air annealing on the microstructure and scintillation properties of Ce, Mg∶LuAG ceramics [J].J. Am. Ceram. Soc., 2019, 102(4): 1805-1813.
HU Z, CHEN X, LIU X, et al. Fabrication and scintillation properties of Pr∶Lu3Al5O12 transparent ceramics from co-precipitated nanopowders [J].J. Alloys Compd., 2020, 818: 152885.
LIU S P, FENG X Q, ZHOU Z W, et al. Effect of Mg2+ co-doping on the scintillation performance of LuAG∶Ce ceramics [J].Phys. Status Solidi (RRL), 2014, 8(1): 105-109.
RHODES W H, WANG Y M, BRECHER C, et al. Loss and recovery of transparency in pressure-consolidated Lu3Al5O12 [J].J. Am. Ceram. Soc., 2011, 94(11): 3655-3658.
BIGOTTA S, GALECKI L, KATZ A, et al. Resonantly pumped eye-safe Er3+∶YAG SPS-HIP ceramic laser [J].Opt. Express, 2018, 26(3): 3435-3442.
LI K, WANG H, LIU X, et al. Mn2+ activated MgAlON transparent ceramic:a new green-emitting transparent ceramic phosphor for high-power white LED [J].J. Eur. Ceram. Soc., 2017, 37(13): 4229-4233.
HOSTAŠA J, COVA F, PIANCASTELLI A, et al. Fabrication and luminescence of Ce-doped GGAG transparent ceramics, effect of sintering parameters and additives [J].Ceram. Int., 2019, 45(17): 23283-23288.
胡泽望, 陈肖朴, 刘欣, 等. 微量SiO2添加对Pr∶Lu3Al5O12陶瓷光学及闪烁性能的影响 [J].无机材料学报, 2020, 35(7): 796-802.
HU Z W, CHEN X P, LIU X, et al. Trace SiO2 addition on optical and scintillation property of Pr∶Lu3Al5O12 ceramics [J].J. Inorg. Mater., 2020, 35(7): 796-802. (in Chinese)
WU Y T, LUO J L, NIKL M, et al. Origin of improved scintillation efficiency in (Lu, Gd)3(Ga, Al)5O12∶Ce multicomponent garnets:an X-ray absorption near edge spectroscopy study [J].APL Mater., 2014, 2(1): 012101.
LAGUTA V V, SLIPENYUK A M, GLINCHUK M D, et al. Paramagnetic impurity defects in LuAG and LuAG∶Sc single crystals [J].Opt. Mater., 2007, 30(1): 79-81.
KHANIN V, VENEVTSEV I, SPOOR S, et al. A new method for unambiguous determination of trap parameters from afterglow and TSL curves connection:example on garnets [J].Opt. Mater., 2017, 72: 161-168.
HU C, LIU S P, SHI Y, et al. Antisite defects in nonstoichiometric Lu3Al5O12∶Ce ceramic scintillators [J].Phys. Status Solidi B, 2015, 252(9): 1993-1999.
MUÑOZ-GARCÍA A B, BARANDIARÁN Z, SEIJO L. Antisite defects in Ce-doped YAG (Y3Al5O12):first-principles study on structures and 4f-5d transitions [J].J. Mater. Chem., 2012, 22(37): 19888-19897.
MUñOZ-GARCíA A, ARTACHO E, SEIJO L. Atomistic and electronic structure of antisite defects in yttrium aluminum garnet:density-functional study [J].Phys. Rev. B, 2009, 80(1): 014105.
HU C, LIU S P, FASOLI M, et al. ESR and TSL study of hole and electron traps in LuAG∶Ce, Mg ceramic scintillator [J].Opt. Mater., 2015, 45: 252-257.
NIKL M, MARES J A, SOLOVIEVA N, et al. Scintillation characteristics of Lu3Al5O12∶Ce optical ceramics [J].J. Appl. Phys., 2007, 101(3): 033515-1-5.
HU Z W, CHEN X P, CHEN H H, et al. Suppression of the slow scintillation component of Pr∶Lu3Al5O12 transparent ceramics by increasing Pr concentration [J].J. Lumin., 2019, 210: 14-20.
KUMAR S A, ASOKAN K, SENTHILSELVAN J. HRTEM morphological features on grain boundary diffusion and particulate necking, photoluminescence and thermoluminescence investigations of nano Ce3+∶LuAG [J].Mater. Charact., 2017, 127: 77-87.
RAMIREZ M O, WISDOM J, LI H F, et al. Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials [J].Opt. Express, 2008, 16(9): 5965-5973.
ZHAO W, MANCINI C, AMANS D, et al. Evidence of the inhomogeneous Ce3+ distribution across grain boundaries in transparent polycrystalline Ce3+-doped (Gd, Y)3Al5O12 garnet optical ceramics [J].Jpn. J. Appl. Phys., 2010, 49(2R): 022602-1-6.
JIANG S L, CHEN J, LONG Y, et al. Atomic structure, electronic structure, and optical properties of YAG (110) twin grain boundary [J].J. Am. Ceram. Soc., 2012, 95(12): 3894-3900.
SHEN Y Q, SHI Y, FENG X Q, et al. The harmful effects of sintering aids in Pr∶LuAG optical ceramic scintillator [J].J. Am. Ceram. Soc., 2012, 95(7): 2130-2132.
SHEN Y Q, FENG X Q, SHI Y, et al. The radiation hardness of Pr∶LuAG scintillating ceramics [J].Ceram. Int., 2014, 40(2): 3715-3719.
YANAGIDA T, FUJIMOTO Y, YOKOTA Y, et al. Comparative study of transparent ceramic and single crystal Ce doped LuAG scintillators [J].Radiat. Meas., 2011, 46(12): 1503-1505.
YANAGIDA T, YOSHIKAWA A, IKESUE A, et al. Basic properties of ceramic Pr∶LuAG scintillators [J].IEEE Trans. Nucl. Sci., 2009, 56(5): 2955-2959.
MARES J A, SHI Y, NIKL M, et al. Scintillation properties of Pr3+-doped optical ceramic and single crystals of Lu3Al5O12 [J].IOP Conf. Ser.: Mater. Sci. Eng., 2010, 15(1): 012020-1-6.
YANAGIDA T, FUKABORI A, FUJIMOTO Y, et al. Scintillation properties of transparent Lu3Al5O12 (LuAG) ceramics doped with different concentrations of Pr3+ [J].Phys. Status Solidi C, 2011, 8(1): 140-143.
刘茜, 陈伟, 刘庆峰, 等. 组合材料芯片技术应用最新进展—新型合金材料的快速发现和优选 [J].科技导报, 2007, 25(23): 64-68.
LIU Q, CHEN W, LIU Q F, et al. Current development of combinatorial materials approach for fast discovering and screening of new alloy materials [J].Sci. Technol. Rev., 2007, 25(23): 64-68. (in Chinese)
ZHANG K, LIU Q F, LIU Q, et al. Combinatorial optimization of (YxLu1-x-y)3Al5O12∶C3y green-yellow phosphors [J].J. Comb. Chem., 2010, 12(4): 453-457.
SU X B, ZHANG K, LIU Q, et al. Combinatorial optimization of (Lu1-xGdx)3Al5O12∶Ce3y yellow phosphors as precursors for ceramic scintillators [J].ACS Comb. Sci., 2011, 13(1): 79-83.
BRGOCH J, DENBAARS S P, SESHADRI R. Proxies from Ab initio calculations for screening efficient Ce3+ phosphor hosts [J].J. Phys. Chem. C, 2013, 117(35): 17955-17959.
YADAV S K, UBERUAGA B P, NIKL M, et al. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles [J].Phys. Rev. Appl., 2015, 4(5): 054012-1-9.
FASOLI M, VEDDA A, NIKL M, et al. Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping [J].Phys. Rev. B, 2011, 84(8): 081102(R)-1-4.
KAMADA K, ENDO T, TSUTUMI K, et al. Composition engineering in cerium-doped (Lu, Gd)3(Ga, Al)5O12 single-crystal scintillators [J].Cryst. Growth Des., 2011, 11(10): 4484-4490.
NIKL M, KAMADA K, BABIN V, et al. Defect engineering in Ce-doped aluminum garnet single crystal scintillators [J].Cryst. Growth Des., 2014, 14(9): 4827-4833.
STANEK C R, MCCLELLAN K J, LEVY M R, et al. Extrinsic defect structure of RE3Al5O12 garnets [J].Phys. Status Solidi B, 2006, 243(11): R75-R77.
DANTELLE G, BOULON G, GUYOT Y, et al. Research on efficient fast scintillators:evidence and X-ray absorption near edge spectroscopy characterization of Ce4+ in Ce3+, Mg2+-Co-doped Gd3Al2Ga3O12 garnet crystal [J].Phys. Status Solidi B, 2020, 257(8): 1900510.
CHEN X P, HU Z W, FENG Y G, et al. Electronic band modification for faster and brighter Ce, Mg∶Lu3-xYxAl5O12 ceramic scintillators [J].J. Lumin., 2019, 214: 116545.
HU C, LIU S P, FASOLI M, et al. O- centers in LuAG∶Ce, Mg ceramics [J].Phys. Status Solidi (RRL), 2015, 9(4): 245-249.
KHANIN V M, VRUBEL I I, POLOZKOV R G, et al. Complex garnets:microscopic parameters characterizing afterglow [J].J. Phys. Chem. C, 2019, 123(37): 22725-22734.
WU Y T, YANG G, HAN D, et al. Role of lithium codoping in enhancing the scintillation yield of aluminate garnets [J].Phys. Rev. Appl., 2020, 13(6): 064060-1-14.
HU C, FENG X Q, LI J, et al. Role of Y admixture in (Lu1-xYx)3Al5O12∶Pr ceramic scintillators free of host luminescence [J].Phys. Rev. Appl., 2016, 6(6): 064026-1-13.
BRYLEW K, SIBCZYNSKI P, MOSZYNSKI M, et al. Non-proportionality and energy resolution of LuxY1-xAG∶Pr and LuAG∶Pr, Mo crystals [J].Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip., 2019, 931: 81-87.
SHANG M M, FAN J, LIAN H Z, et al. A double substitution of Mg2+-Si4+/Ge4+ for http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=21352115&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=21352125&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=21352120&type= in Ce3+-doped garnet phosphor for white LEDs [J].Inorg. Chem., 2014, 53(14): 7748-7755.
DU Q P, FENG S W, QIN H M, et al. Massive red-shifting of Ce3+ emission by Mg2+ and Si4+ doping of YAG∶Ce transparent ceramic phosphors [J].J. Mater. Chem. C, 2018, 6(45): 12200-12205.
TIAN Y N, TANG Y R, YI X Z, et al. Optimization of Ce3+ concentration and Y4MgSi3O13 phase in Mg2+-Si4+ co-doped Ce∶YAG ceramic phosphors [J].J. Am. Ceram. Soc., 2020, 103(11): 6453-6460.
LIN H, XU J, HUANG Q M, et al. Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12∶Ce3+ persistent phosphor potentially applicable in AC-LED [J].ACS Appl. Mater. Interfaces, 2015, 7(39): 21835-21843.
LIN H, WANG B, HUANG Q M, et al. Lu2CaMg2(Si1-xGex)3O12∶Ce3+ solid-solution phosphors:bandgap engineering for blue-light activated afterglow applicable to AC-LED [J].J. Mater. Chem. C, 2016, 4(43): 10329-10338.
JI H P, WANG L, MOLOKEEV M S, et al. Structure evolution and photoluminescence of Lu3(Al, Mg)2(Al, Si)3O12∶Ce3+ phosphors:new yellow-color converters for blue LED-driven solid state lighting [J].J. Mater. Chem. C, 2016, 4(28): 6855-6863.
WEBER M J. Handbook of Optical Materials[M].New York: CRC Press, 2003.
MENG Q H, WANG X J, ZHU Q, et al. The effects of Mg2+/Si4+ co-substitution for Al3+ on sintering and photoluminescence of (Gd, Lu)3Al5O12∶Ce garnet ceramics [J].J. Eur. Ceram. Soc., 2020, 40(8): 3262-3269.
MENG Q H, LI J G, ZHU Q, et al. The effects of Mg2+/Si4+ substitution on crystal structure, local coordination and photoluminescence of (Gd, Lu)3Al5O12∶Ce garnet phosphor [J].J. Alloys Compd., 2019, 797: 477-485.
YANAGIDA T. Study of rare-earth-doped scintillators [J].Opt. Mater., 2013, 35(11): 1987-1992.
SHI Y, ZHAO Y, LIU Q, et al. Fabrication, microstructure and luminescence properties of Cr3+ doped Lu3A15O12 red scintillator ceramics [J].Opt. Mater., 2017, 66: 487-493.
YANAGIDA T, KAMADA K, FUJIMOTO Y, et al. Scintillation properties of transparent ceramic and single crystalline Nd∶YAG scintillators [J].Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip., 2011, 631(1): 54-57.
SUGIYAMA M, FUJIMOTO Y, YANAGIDA T, et al. Growth and scintillation properties of Nd-doped Lu3Al5O12 single crystals by Czochralski and micro-pulling-down methods [J].J. Cryst. Growth, 2013, 362: 178-181.
SUGIYAMA M, FUJIMOTO Y, YANAGIDA T, et al. Nd-doped Lu3Al5O12 single-crystal scintillator for X-ray imaging [J].Radiat. Meas., 2013, 55: 103-107.
OGIEGŁO J M, ZYCH A, IVANOVSKIKH K V, et al. Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+ [J].J. Phys. Chem. A, 2012, 116(33): 8464-8474.
ZHANG Y L, HU S, LIU Y L, et al. Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12∶Mn4+ ceramic phosphor [J].J. Eur. Ceram. Soc., 2019, 39(2-3): 584-591.
ZHOU H L, AN N, ZHU K S, et al. Optical temperature sensing properties of Tm3+/Yb3+ co-doped LuAG polycrystalline phosphor based on up-conversion luminescence [J].J. Lumin., 2021, 229: 117656.
KHARIEKY A A, SARAEE K R E. Photo and radio-luminescence properties of LuAG∶Eu3+ nano crystalline powder [J].Solid State Sci., 2020, 108: 106335.
0
Views
383
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution