浏览全部资源
扫码关注微信
1.苏州科技大学 材料科学与工程学院,江苏 苏州 215009
2.浙江大学化学系 浙江省激发态材料重点实验室,浙江 杭州 310027
Published:01 July 2021,
Received:31 January 2021,
Revised:26 February 2021,
移动端阅览
JIAN LIN, DE-SUI CHEN, JIA-HUI SHEN, et al. Luminescence of Mn2+ in Metal Chalcogenide Cluster-based Semiconductors. [J]. Chinese journal of luminescence, 2021, 42(7): 953-975.
JIAN LIN, DE-SUI CHEN, JIA-HUI SHEN, et al. Luminescence of Mn2+ in Metal Chalcogenide Cluster-based Semiconductors. [J]. Chinese journal of luminescence, 2021, 42(7): 953-975. DOI: 10.37188/CJL.20210047.
锰离子相对稳定的发光特性及锰掺杂荧光粉的成功使得人们对锰离子发光的研究热情不减。本文综述了Mn
2+
掺杂金属硫族簇基半导体中团簇结构、组分关联的Mn
2+
发光特性。金属硫族簇基半导体具有原子级的精确结构,为探究Mn
2+
发光的精确“构效关系”提供了理想模型。在Mn
2+
掺杂的金属硫族簇基半导体中, Mn
2+
附近键长和团簇组装方式的差异决定了Mn
2+
配位场强的变化,进而影响Mn
2+
发光波长的变化。在Mn
2+
掺杂的金属硫族纳米团簇中,Mn
2+
的聚集形式和聚集体中Mn
2+
的数量决定了Mn-Mn耦合相互作用的大小,直接影响Mn
2+
发光效率、寿命及激发特性。
The relatively stable luminescence properties of manganese ions and the success of manganese doped phosphors benefit the continuous study on the luminescence properties of manganese ions. In this paper
cluster structures and component-related luminescence properties of Mn
2+
ions in the Mn
2+
doped metal chalcogenide cluster-based semiconductors are reviewed. Metal chalcogenide cluster-based semiconductors with precisely structure in atomic level
provide an ideal model for exploring the precise "structure-property relationship" corresponding to the luminescence of Mn
2+
ions. In the Mn
2+
doped metal chalcogenide cluster-based semiconductors
the difference of bond length near Mn
2+
ions and the assembly mode of clusters determine the change of Mn
2+
coordination field intensity
further affect the change of Mn
2+
ion emission wavelength. In the Mn
2+
doped metal chalcogenide nanoclusters
the aggregation form of Mn
2+
ions and the number of Mn
2+
ions in the aggregate determine the magnitude of Mn-Mn coupling interactions
which directly affect the luminescence efficiency
lifetime
and excitation characteristics of Mn
2+
ions.
金属硫族化合物锰掺杂半导体
metal chalcogenidesmanganese dopingsemiconductor
TALAPIN D V, LEE J S, KOVALENKO M V, et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications [J].Chem. Rev., 2010, 110(1): 389-458.
DAI X L, DENG Y Z, PENG X G, et al. Quantum-dot light-emitting diodes for large-area displays:towards the dawn of commercialization [J].Adv. Mater., 2017, 29(14): 1607022-1-22.
HILDEBRANDT N, SPILLMANN C M, ALGAR W R, et al. Energy transfer with semiconductor quantum dot bioconjugates:a versatile platform for biosensing, energy harvesting, and other developing applications [J].Chem. Rev., 2017, 117(2): 536-711.
ZHENG N F, BU X H, WANG B, et al. Microporous and photoluminescent chalcogenide zeolite analogs [J].Science, 2002, 298(5602): 2366-2369.
XIONG W W, ZHANG Q C. Surfactants as promising media for the preparation of crystalline inorganic materials [J].Angew. Chem. Int. Ed., 2015, 54(40): 11616-11623.
WU T, WANG L, BU X H, et al. Largest molecular clusters in the supertetrahedral Tn series [J].J. Am. Chem. Soc., 2010, 132(31): 10823-10831.
ZHANG J X, BU X H, FENG P Y, et al. Metal chalcogenide supertetrahedral clusters:synthetic control over assembly, dispersibility, and their functional applications [J].Acc. Chem. Res., 2020, 53(10): 2261-2272.
ZHENG N F, BU X H, FENG P Y. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity [J].Nature, 2003, 426(6965): 428-432.
BU X H, ZHENG N F, FENG P Y. Tetrahedral chalcogenide clusters and open frameworks [J].Chem. Eur. J., 2004, 10(14): 3356-3362.
FENG P Y, BU X H, Zheng N F. The interface chemistry between chalcogenide clusters and open framework chalcogenides [J].Acc. Chem. Res., 2005, 38(4): 293-303.
WU T, BU X H, LIAO P H, et al. Superbase route to supertetrahedral chalcogenide clusters [J].J. Am. Chem. Soc., 2012, 134(8): 3619-3622.
HU D D, LIN J, ZHANG Q, et al. Multi-step host-guest energy transfer between inorganic chalcogenide-based semiconductor zeolite material and organic dye molecules [J].Chem. Mater., 2015, 27(11): 4099-4104.
HU D D, WANG L, LIN J, et al. Tuning the efficiency of multi-step energy transfer in a host-guest antenna system based on a chalcogenide semiconductor zeolite through acidification and solvation of guests [J].J. Mater. Chem. C, 2015, 3(44): 11747-11753.
LIN J, DONG Y Z, ZHANG Q, et al. Interrupted chalcogenide-based zeolite-analogue semiconductor:atomically precise doping for tunable electro-/photoelectrochemical properties [J].Angew. Chem. Int. Ed., 2015, 54(17): 5103-5107.
YANG H J, LUO M, LUO L, et al. Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy [J].Chem. Mater., 2016, 28(23): 8774-8780.
YANG H J, WANG L, HU D D, et al. A novel copper-rich open-framework chalcogenide constructed from octahedral Cu4Se6 and icosahedral Cu8Se13 nanoclusters [J].Chem. Commun., 2016, 52(22): 4140-4143.
LIN J, FU Z X, ZHANG J X, et al. Substituent-modulated assembly formation:an approach to enhancing the photostability of photoelectric-sensitive chalcogenide-based ion-pair hybrids [J].Inorg. Chem., 2017, 56(6): 3119-3122.
YANG H J, LUO M, CHEN X T, et al. Cation-exchanged zeolitic chalcogenides for CO2 adsorption [J].Inorg. Chem., 2017, 56(24): 14999-15005.
LIN J, HU D D, YANG H J, et al. Nonlinear variation in the composition and optical band gap of an alloyed cluster-based open-framework metal chalcogenide [J].Inorg. Chem., 2018, 57(8): 4248-4251.
WU S J, LIANG C Y, ZHANG J X, et al. A photoconductive X-ray detector with a high figure of merit based on an open-framework chalcogenide semiconductor [J].Angew. Chem. Int. Ed., 2020, 59(42): 18605-18610.
BUONSANTI R, MILLIRON D J. Chemistry of doped colloidal nanocrystals [J].Chem. Mater., 2013, 25(8): 1305-1317.
PRADHAN N, SARMA D D. Advances in light-emitting doped semiconductor nanocrystals [J].J. Phys. Chem. Lett., 2011, 2(21): 2818-2826.
FAINBLAT R, BARROWS C J, GAMELIN D R. Single magnetic impurities in colloidal quantum dots and magic-size clusters [J].Chem. Mater., 2017, 29(19): 8023-8036.
PRADHAN N. Mn-doped semiconductor nanocrystals:25 years and beyond [J].J. Phys. Chem. Lett., 2019, 10(10): 2574-2577.
陈肖慧, 刘洋, 华杰, 等. Mn掺杂Zn-In-S量子点的制备及发光性质研究 [J].发光学报, 2015, 36(10): 1113-1117.
CHEN X H, LIU Y, HUA J, et al. Preparation and photoluminescence properties of Mn doped Zn-In-S quantum dots [J].Chin. J. Lumin., 2015, 36(10): 1113-1117. (in Chinese)
董国义, 林琳, 韦志仁, 等. 退火处理对ZnS∶Cu, Mn电致发光材料亮度的影响 [J].发光学报, 2005, 26(6): 733-736.
DONG G Y, LIN L, WEI Z R, et al. Effect of annealing on brightness of ZnSZnS∶Cu, Mn ACEL material [J].Chin. J. Lumin., 2005, 26(6): 733-736. (in Chinese)
杨兵初, 张丽, 马学龙, 等. 掺锰氧化锌的结构和光学特性 [J].发光学报, 2007, 28(6): 875-879.
YANG B C, ZHANG L, MA X L, et al. The structural and optical properties of Mn-doped ZnO thin film [J].Chin. J. Lumin., 2007, 28(6): 875-879. (in Chinese)
LIN J, ZHANG Q, WANG L, et al. Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn2+ emission [J].J. Am. Chem. Soc., 2014, 136(12): 4769-4779.
LIN J, HU D D, ZHANG Q, et al. Improving photoluminescence emission efficiency of nanocluster-based materials by in situ doping synthetic strategy [J].J. Phys. Chem. C, 2016, 120(51): 29390-29396.
ZHANG Q, LIN J, YANG Y T, et al. Exploring Mn2+-location-dependent red emission from (Mn/Zn)-Ga-Sn-S supertetrahedral nanoclusters with relatively precise dopant positions [J].J. Mater. Chem. C, 2016, 4(44): 10435-10444.
XU X F, HU D D, XUE C Z, et al. Exploring the effects of intercluster torsion stress on Mn2+-related red emission from cluster-based layered metal chalcogenides [J].J. Mater. Chem. C, 2018, 6(39): 10480-10485.
LIU Y, ZHANG J X, HAN B, et al. New insights into Mn-Mn coupling interaction-directed photoluminescence quenching mechanism in Mn2+-doped semiconductors [J].J. Am. Chem. Soc., 2020, 142(14): 6649-6660.
WANG H X, WANG W, HU D D, et al. Hybrid assembly of different-sized supertetrahedral clusters into a unique non-interpenetrated Mn-In-S open framework with large cavity [J].Inorg. Chem., 2018, 57(11): 6710-6715.
XU X F, WANG W, LIU D L, et al. Pushing up the size limit of metal chalcogenide supertetrahedral nanocluster [J].J. Am. Chem. Soc., 2018, 140(3): 888-891.
XUE C Z, FAN X, ZHANG J X, et al. Direct observation of charge transfer between molecular heterojunctions based on inorganic semiconductor clusters [J].Chem. Sci., 2020, 11(16): 4085-4096.
LI Y M, QI S, LI P L, et al. Research progress of Mn doped phosphors [J].RSC Adv., 2017, 7(61): 38318-38334.
ADACHI S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications:a review [J].J. Lumin., 2018, 202: 263-281.
ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al. Mn2+ and Mn4+ red phosphors:synthesis, luminescence and applications in WLEDs. A review [J].J. Mater. Chem. C, 2018, 6(11): 2652-2671.
BRIK M G, 马崇庚, SRIVASTAVA A M, 等. 用于固态照明的Mn4+离子光谱学 [J].发光学报, 2020, 41(9): 1011-1029.
BRIK M G, MA C G, SRIVASTAVA A M, et al. Mn4+ ions for solid state lighting [J].Chin. J. Lumin., 2020, 41(9): 1011-1029. (in Chinese)
QU B Y, ZHOU R L, WANG L, et al. How to predict the location of the defect levels induced by 3d transition metal ions at octahedral sites of aluminate phosphors [J].J. Mater. Chem. C, 2019, 7(1): 95-103.
WANG L, ZHAO J, ZHAO N, et al. Quantitative insights into the chemical trend of four-coordinated Mn2+ emission in inorganic compounds [J].J. Lumin., 2020, 225: 117399.
陈肖慧, 季思航, 袁曦, 等. Mn掺杂CsPbCl3钙钛矿量子点的发光性质 [J].发光学报, 2018, 39(5): 609-614.
CHEN X H, JI S H, YUAN X, et al. Photoluminescence properties of Mn doped CsPbCl3 perovskite quantum dots [J].Chin. J. Lumin., 2018, 39(5): 609-614. (in Chinese)
WEI Y L, JING J, SHI C, et al. High quantum yield and unusual photoluminescence behaviour in tetrahedral manganese(Ⅱ) based on hybrid compounds [J].Inorg. Chem. Front., 2018, 5(10): 2615-2619.
ADHIKARI S D, GURIA A K, PRADHAN N. Insights of doping and the photoluminescence properties of Mn-doped perovskite nanocrystals [J].J. Phys. Chem. Lett., 2019, 10(9): 2250-2257.
GONG L K, HU Q Q, HUANG F Q, et al. Efficient modulation of photoluminescence by hydrogen bonding interactions between inorganic [MnBr4]2- anions and organic cations [J].Chem. Commun., 2019, 55(51): 7303-7306.
SHE P F, MA Y, QIN Y Y, et al. Dynamic luminescence manipulation for rewritable and multi-level security printing [J].Matter, 2019, 1(6): 1644-1655.
MORAD V, CHERNIUKH I, PÖTTSCHACHER L, et al. Manganese(Ⅱ) in tetrahedral halide environment:factors governing bright green luminescence [J].Chem. Mater., 2019, 31(24): 10161-10169.
XU L J, LIN X S, HE Q Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide [J].Nat. Commun., 2020, 11(1): 4329-1-7.
吴越, 杨明, 王金云, 等. 锰(Ⅱ)配合物发光材料与器件研究进展 [J].无机化学学报, 2020, 36(6): 1001-1013.
WU Y, YANG M, WANG J Y, et al. Recent process of luminescent materials and devices based on manganese(Ⅱ) complexes [J].Chin. J. Inorg. Chem., 2020, 36(6): 1001-1013. (in Chinese)
QIN Y Y, SHE P F, HUANG X M, et al. Luminescent manganese(Ⅱ) complexes:synthesis, properties and optoelectronic applications [J].Coord. Chem. Rev., 2020, 416: 213331.
WU T, ZHANG Q, HOU Y, et al. Monocopper doping in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response [J].J. Am. Chem. Soc., 2013, 135(28): 10250-10253.
ZUO T S, SUN Z P, ZHAO Y L, et al. The big red shift of photoluminescence of Mn dopants in strained CdS:a case study of Mn-doped MnS-CdS heteronanostructures [J].J. Am. Chem. Soc., 2010, 132(19): 6618-6619.
KIM D, MIYAMOTO M, NAKAYAMA M. Photoluminescence properties and energy transfer processes from excitons to Mn2+ ions in Mn2+-doped CdS quantum dots prepared by a reverse-micelle method [J].J. Appl. Phys., 2006, 100(9): 094313-1-6.
NAG A, SARMA D D. White light from Mn2+-doped Cds nanocrystals:a new approach [J].J. Phys. Chem. C, 2007, 111(37): 13641-13644.
YANG Y A, CHEN O, ANGERHOFER A, et al. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals [J].J. Am. Chem. Soc., 2006, 128(38): 12428-12429.
PRADHAN N, PENG X G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters:control of optical performance via greener synthetic chemistry [J].J. Am. Chem. Soc., 2007, 129(11): 3339-3347.
GRAF C, HOFMANN A, ACKERMANN T, et al. Magnetic and structural investigation of ZnSe semiconductor nanoparticles doped with isolated and core-concentrated Mn2+ ions [J].Adv. Funct. Mater., 2009, 19(15): 2501-2510.
CAO S, DAI C C, YAO S F, et al. Synthesis and optical properties of Mn2+-doped Cd-In-S colloidal nanocrystals [J].J. Mater. Sci., 2020, 55(27): 12801-12810.
LEE Y H, KIM D H, JU B K, et al. Decrease of the number of the isolated emission center Mn2+ in an aged ZnS∶Mn electroluminescent device [J].J. Appl. Phys., 1995, 78(6): 4253-4257.
BHARGAVA R N, GALLAGHER D, HONG X, et al. Optical properties of manganese-doped nanocrystals of ZnS [J].Phys. Rev. Lett., 1994, 72(3): 416-419.
BOL A A, MEIJERINK A. Long-lived Mn2+ emission in nanocrystalline ZnS∶Mn2+ [J].Phys. Rev. B, 1998, 58(24): R15997-R16000.
SUYVER J F, WUISTER S F, KELLY J J, et al. Luminescence of nanocrystalline ZnSe∶Mn2+ [J].Phys. Chem. Chem. Phys., 2000, 2(23): 5445-5448.
ZENG R S, RUTHERFORD M, XIE R G, et al. Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents [J].Chem. Mater., 2010, 22(6): 2107-2113.
PU C D, MA J L, QIN H Y, et al. Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range:synthesis and applications [J].ACS Cent. Sci., 2016, 2(1): 32-39.
YANG X L, PU C D, QIN H Y, et al. Temperature- and Mn2+ concentration-dependent emission properties of Mn2+-doped ZnSe nanocrystals [J].J. Am. Chem. Soc., 2019, 141(6): 2288-2298.
JUNG D R, SON D, KIM J, et al. Highly luminescent surface-passivated ZnS∶Mn nanoparticles by a simple one-step synthesis [J].Appl. Phys. Lett., 2008, 93(16): 163118-1-3.
ZHANG Y, LIAO W Q, FU D W, et al. Highly efficient red-light emission in an organic-inorganic hybrid ferroelectric:(pyrrolidinium)MnCl3 [J].J. Am. Chem. Soc., 2015, 137(15): 4928-4931.
LIN J, WANG L, ZHANG Q, et al. Highly effective nanosegregation of dual dopants in a micron-sized nanocluster-based semiconductor molecular single crystal for targeting white-light emission [J].J. Mater. Chem. C, 2016, 4(8): 1645-1650.
WANG F, LIN J, ZHAO T B, et al. Intrinsic “vacancy point defect” induced electrochemiluminescence from coreless supertetrahedral chalcogenide nanocluster [J].J. Am. Chem. Soc., 2016, 138(24): 7718-7724.
WANG F, LIN J, YU S S, et al. Anti-site defects-assisted enhancement of electrogenerated chemiluminescence from in situ Mn2+-doped supertetrahedral chalcogenide nanoclusters [J].ACS Appl. Mater. Interfaces, 2018, 10(44): 38223-38229.
0
Views
253
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution