浏览全部资源
扫码关注微信
上海理工大学 材料科学与工程学院, 上海 200093
[ "李慧珺(1990-),女,安徽合肥人,博士,讲师,2016年于复旦大学获得博士学位,主要从事碳纳米材料研究及应用开发。E-mail: huijunli0701@126.com" ]
[ "王丁(1982-),男,安徽砀山人,博士,副教授,2013年于日本国立富山大学获得博士学位,主要从事半导体敏感材料及传感器的研究。E-mail: wangding@usst.edu.cn" ]
Published:01 June 2021,
Received:28 January 2021,
Revised:16 February 2021,
移动端阅览
HUI-JUN LI, BO-JIE GUI, SHI-BO ZHI, et al. A Mini Review on Polymer Dots: Synthesis, Properties and Optical Applications. [J]. 发光学报, 2021, 42(6): 774-792.
HUI-JUN LI, BO-JIE GUI, SHI-BO ZHI, et al. A Mini Review on Polymer Dots: Synthesis, Properties and Optical Applications. [J]. 发光学报, 2021, 42(6): 774-792. DOI: 10.37188/CJL.20210044.
聚合物点由于具有易调控的光电特性一直备受相关领域研究者们的关注. 作为一种新型碳基纳米材料,聚合物点的分类、合成方法及性能仍缺乏较为系统的总结. 本篇综述根据聚合物点的结构,将其分为共轭聚合物点和碳化聚合物点,主要围绕两种聚合物点的定义、合成方法及发光机理进行了讨论. 此外,本文还对聚合物点近年来的光学应用进行了总结,包括生物成像和荧光标记、药物和基因传递、传感、光电器件、光催化和防伪等.
Polymer dots(PDs) have attracted intensive attention due to their advantages of tunable electrical and optical properties based on suitable manipulation of the structure and composition. As a new type of dots
the classification
synthetic methods and properties of PDs still lack systemic summarization. In this review
the polymer dots are divided into two kinds based on their structures: conjugated polymer dots(CPDs) and carbonized polymer dots(carbonized PDs). The definitions
synthetic methods and photoluminescence mechanisms of the two PDs will be discussed. Besides
their applications are demonstrated including bioimaging and fluorescent labelling
drug and gene delivery
sensing
photocatalysis and anti-counterfeiting.
聚合物点共轭聚合物点碳化聚合物点光致发光
polymer dotsconjugated polymer dots(CPDs)carbonized PDsphotoluminescence
XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].J. Am. Chem. Soc., 2004, 126(40):12736-12737.
WU C F, CHIU D T. Highly fluorescent semiconducting polymer dots for biology and medicine [J].Angew. Chem. Int. Ed., 2013, 52(11):3086-3109.
SANO M, OKAMURA J, SHINKAI S. Formation of ordered nanometer-sized polymer dots on silicon by friction rubbing method [J].Chem. Lett., 1998, 27(1):21-22.
WU C F, SZYMANSKI C, CAIN Z, et al. Conjugated polymer dots for multiphoton fluorescence imaging [J].J. Am. Chem. Soc., 2007, 129(43):12904-12905.
ZHU M Q, ZHU L Y, HAN J J, et al. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence [J].J. Am. Chem. Soc., 2006, 128(13):4303-4309.
KIETZKE T, NEHER D, LANDFESTER K, et al. Novel approaches to polymer blends based on polymer nanoparticles [J].Nat. Mater., 2003, 2(6):408-412.
CAMMAS S, SUZUKI K, SONE C, et al. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers [J].J. Control. Release, 1997, 48(2-3):157-164.
WU X, CHIU D T. Conjugated polymer nanoparticles and semiconducting polymer dots for molecular sensing and in vivo and cellular imaging [M].LIU B L. Conjugated Polymers for Biological and Biomedical Applications. Weinheim, Germany: Wiley-VCH, 2018: 59-85.
ZHU S J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots(graphene quantum dots, carbon nanodots, and polymer dots):current state and future perspective [J].Nano Res., 2015, 8(2):355-381.
SONG Y B, ZHU S J, YANG B. Bioimaging based on fluorescent carbon dots [J].RSC Adv., 2014, 4(52):27184-27200.
WU C F, SCHNEIDER T, ZEIGLER M, et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting [J].J. Am. Chem. Soc., 2010, 132(43):15410-15417.
DING D, GOH C C, FENG G X, et al. Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging [J].Adv. Mater., 2013, 25(42):6083-6088.
LAI T T, ZHENG E H, CHEN L X, et al. Hybrid carbon source for producing nitrogen-doped polymer nanodots:one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(Ⅲ) [J].Nanoscale, 2013, 5(17):8015-8021.
SUN Y, CAO W P, LI S L, et al. Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy [J].Sci. Rep., 2013, 3:3036-1-6.
XIA C L, ZHU S J, FENG T L, et al. Evolution and synthesis of carbon dots:from carbon dots to carbonized polymer dots [J].Adv. Sci., 2019, 6(23):1901316-1-23.
TAO S Y, FENG T L, ZHENG C Y, et al. Carbonized polymer dots:a brand new perspective to recognize luminescent carbon-based nanomaterials [J].J. Phys. Chem. Lett., 2019, 10(17):5182-5188.
FRIEND R H, GYMER R W, HOLMES A B, et al. Electroluminescence in conjugated polymers [J].Nature, 1999, 397(6715):121-128.
WANG S W, LIU J, FENG G X, et al. NIR-II excitable conjugated polymer dots with bright NIR-Ⅰ emission for deep in vivo two-photon brain imaging through intact skull [J].Adv. Funct. Mater., 2019, 29(15):1808365-1-11.
LIU B, BAZAN G C. Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers [J].Chem. Mater., 2004, 16(23):4467-4476.
HUANG F, WU H B, CAO Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices [J].Chem. Soc. Rev., 2010, 39(7):2500-2521.
LI K, LIU B. Polymer encapsulated conjugated polymernanoparticles for fluorescence bioimaging [J].J. Mater. Chem. A, 2012, 22(4):1257-1264.
FENG L H, ZHU C L, YUAN H X, et al. Conjugated polymernanoparticles:preparation, properties, functionalization and biological applications [J].Chem. Soc. Rev., 2013, 42(16):6620-6633.
ZHU C L, LIU L B, YANG Q, et al. Water-soluble conjugated polymers for imaging, diagnosis, and therapy [J].Chem. Rev., 2012, 112(8):4687-4735.
KIM J, LEE J, LEE T S. Size-dependent fluorescence of conjugated polymer dots and correlation with the fluorescence in solution and in the solid phase of the polymer [J].Nanoscale, 2020, 12(4):2492-2497.
COAKLEY K M, MCGEHEE M D. Conjugated polymer photovoltaic cells [J].Chem. Mater., 2004, 16(23):4533-4542.
SMELA E. Conjugated polymer actuators for biomedical applications [J].Adv. Mater., 2003, 15(6):481-494.
MCQUADE D T, PULLEN A E, SWAGER T M. Conjugated polymer-based chemical sensors [J].Chem. Rev., 2000, 100(7):2537-2574.
GÜNES S, NEUGEBAUER H, SARICIFTCI N S. Conjugated polymer-based organic solar cells [J].Chem. Rev., 2007, 107(4):1324-1338.
LI K, QIN W, DING D, et al. Photostable fluorescent organic dots with aggregation-induced emission(AIE dots) for noninvasive long-term cell tracing [J].Sci. Rep., 2013, 3:1150-1-10.
ZHU S J, ZHANG J H, WANG L, et al. A general route to make non-conjugated linear polymers luminescent [J].Chem. Commun., 2012, 48(88):10889-10891.
ZHU S J, WANG L, ZHOU N, et al. The crosslink enhanced emission(CEE) in non-conjugated polymer dots:from the photoluminescence mechanism to the cellular uptake mechanism and internalization [J].Chem. Commun., 2014, 50(89):13845-13848.
ZHU S J, SONG Y B, SHAO J R, et al. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units [J].Angew. Chem. Int. Ed., 2015, 54(49):14626-14637.
LU S Y, CONG R D, ZHU S J, et al. pH-dependent synthesis of novel structure-controllable polymer-carbon nanodots with high acidophilic luminescence and super carbon dots assembly for white light-emitting diodes [J].ACS Appl. Mater. Interfaces, 2016, 8(6):4062-4068.
TAO S Y, SONG Y B, ZHU S J, et al. A new type of polymer carbon dots with high quantum yield:from synthesis to investigation on fluorescence mechanism [J].Polymer, 2017, 116:472-478.
XIA C L, TAO S Y, ZHU S J, et al. Hydrothermal addition polymerization for ultrahigh-yield carbonized polymer dots with room temperature phosphorescence via nanocomposite [J].Chem.-Eur. J., 2018, 24(44):11303-11308.
TAO S Y, ZHU S J, FENG T L, et al. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots:a review [J].Mater. Today Chem., 2017, 6:13-25.
DING H, YU S B, WEI J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism [J].ACS Nano, 2016, 10(1):484-491.
MIAO X, QU D, YANG D X, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization [J].Adv. Mater., 2018, 30(1):1704740-1-8.
NEKOUEIAN K, AMIRI M, SILLANPÄÄ M, et al. Carbon-based quantum particles:an electroanalytical and biomedical perspective [J].Chem. Soc. Rev., 2019, 48(15):4281-4316.
WANG L, LI W T, YIN L Q, et al. Full-color fluorescent carbon quantum dots [J].Sci. Adv., 2020, 6(40):eabb6772-1-8.
KWON W, DO S G, KIM J H, et al. Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines [J].Sci. Rep., 2015, 5:12604-1-10.
SHAMSIPUR M, BARATI A, TAHERPOUR A A, et al. Resolving the multiple emission centers in carbon dots:from fluorophore molecular states to aromatic domain states and carbon-core states [J].J. Phys. Chem. Lett., 2018, 9(15):4189-4198.
TONG D Y, LI W Y, ZHAO Y X, et al. Non-conjugated polyurethane polymer dots based on crosslink enhanced emission (CEE) and application in Fe3+ sensing [J].RSC Adv., 2016, 6(99):97137-97141.
CHEN Y, ZHANG Y, LYU T T, et al. A facile strategy for the synthesis of water-soluble fluorescent nonconjugated polymer dots and their application in tetracycline detection [J].J. Mater. Chem. C, 2019, 7(30):9241-9247.
VALLAN L, URRIOLABEITIA E P, BENITO A M, et al. A versatile room-temperature method for the preparation of customized fluorescent non-conjugated polymer dots [J].Polymer, 2019, 177:97-101.
GENG T, FENG T L, MA Z W, et al. Insights into supramolecular-interaction-regulated piezochromic carbonized polymer dots [J].Nanoscale, 2019, 11(11):5072-5079.
LIU Y, LIU J J, ZHANG J Y, et al. Noninvasive brain tumor imaging using red emissive carbonized polymer dots across the blood-brain barrier [J].ACS Omega, 2018, 3(7):7888-7896.
LUO C, OKUBO T, NANGREJO M, et al. Preparation of polymeric nanoparticles by novel electrospray nanoprecipitation [J].Polym. Int., 2015, 64(2):183-187.
FESSI H, PUISIEUX F, DEVISSAGUET J P, et al. Nanocapsule formation by interfacial polymer deposition following solvent displacement [J].Int. J. Pharm., 1989, 55(1):R1-R4.
SUN W, YU J B, DENG R P, et al. Semiconducting polymer dots doped with europium complexes showing ultranarrow emission and long luminescence lifetime for time-gated cellular imaging [J].Angew. Chem. Int. Ed., 2013, 52(43):11294-11297.
WU C F, BULL B, SZYMANSKI C, et al. Multicolor conjugated polymer dots for biological fluorescence imaging [J].ACS Nano, 2008, 2(11):2415-2423.
WU Y Y, RUAN H F, ZHAO R, et al. Ultrastable fluorescent polymer dots for stimulated emission depletion bioimaging [J].Adv. Opt. Mater., 2018, 6(19):1800333-1-6.
HASHIM Z, HOWES P, GREEN M. Luminescent quantum-dot-sized conjugated polymernanoparticles-nanoparticle formation in a miniemulsion system [J].J. Mater. Chem. A, 2011, 21(6):1797-1803.
CABEZA L, ORTIZ R, ARIAS J L, et al. Enhanced antitumor activity of doxorubicin in breast cancer through the use of poly (butylcyanoacrylate) nanoparticles [J].Int. J. Nanomed., 2015, 10(1):1291-1306.
ZHAO Q, ZHOU X B, CAO T Y, et al. Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging [J].Chem. Sci., 2015, 6(3):1825-1831.
ZHANG H, NIE C, WANG J, et al. Synthesis of novel organic-inorganic hybrid fluorescent microspheres and their applications as Fe(Ⅲ), Hg(Ⅱ) and biothiols probes [J].Talanta, 2019, 195:719.
GLOTZER S C, SOLOMON M J. Anisotropy of building blocks and their assembly into complex structures [J].Nat. Mater., 2007, 6(8):557-562.
VAN ANDERS G, AHMED N K, SMITH R, et al. Entropically patchy particles:engineering valence through shape entropy [J].ACS Nano, 2014, 8(1):931-940.
LIU S G, LUO D, LI N, et al. Water-soluble nonconjugated polymer nanoparticles with strong fluorescence emission for selective and sensitive detection of nitro-explosive picric acid in aqueous medium [J].ACS Appl. Mater. Interfaces, 2016, 8(33):21700-21709.
SONG Y B, ZHU S J, SHAO J R, et al. Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism [J].J. Polym. Sci. A: Polym. Chem., 2017, 55(4):610-615.
LIU J J, LI D W, ZHANG K, et al. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging [J].Small, 2018, 14(15):1703919.
TAN C L, ZHOU C, PENG X Y, et al. Sulfuric acid assisted preparation of red-emitting carbonized polymer dots and the application of bio-imaging [J].Nanoscale Res. Lett., 2018, 13(1):272-1-6.
RAJABI H R, NAGHIHA R, KHEIRIZADEH M, et al. Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles:synthesis, characterization, and biological properties [J].Mater. Sci. Eng. C, 2017, 78:1109-1118.
ZHAO L, LI H Y, LIU H C, et al. Microwave-assisted facile synthesis of polymer dots as a fluorescent probe for detection of cobalt(Ⅱ) and manganese(Ⅱ) [J].Anal. Bioanal. Chem., 2019, 411(11):2373-2381.
FENG T L, TAO S Y, YUE D, et al. Recent advances in energy conversion applications of carbon dots:from optoelectronic devices to electrocatalysis [J].Small, 2020, 16(31):2001295-1-30.
CHAN Y H, GALLINA M E, ZHANG X J, et al. Reversible photoswitching of spiropyran-conjugated semiconducting polymer dots [J].Anal. Chem., 2012, 84(21):9431-9438.
WU I C, YU J B, YE F M, et al. Squaraine-based polymer dots with narrow, bright near-infrared fluorescence for biological applications [J].J. Am. Chem. Soc., 2015, 137(1):173-178.
WANG L, FERNÁNDEZ-TERÁN R, ZHANG L, et al. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation [J].Angew. Chem. Int. Ed., 2016, 55(40):12306-12310.
KIM J, LEE T S. Emission tuning with size-controllable polymer dots from a single conjugated polymer [J].Small, 2018, 14(1):1702758.
ANDRONICO L A, CHEN L, MIRASOLI M, et al. Thermochemiluminescent semiconducting polymer dots as sensitive nanoprobes for reagentless immunoassay [J].Nanoscale, 2018, 10(29):14012-14021.
LIU A J, TAI C W, HOLÁ K, et al. Hollow polymer dots:nature-mimicking architecture for efficient photocatalytic hydrogen evolution reaction [J].J. Mater. Chem. A, 2019, 7(9):4797-4803.
SUN B, ZHAO B, WANG D D, et al. Fluorescent non-conjugated polymer dots for targeted cell imaging [J].Nanoscale, 2016, 8(18):9837-9841.
ZHANG H, DONG X Z, WANG J H, et al. Fluorescence emission of polyethylenimine-derived polymer dots and its application to detect copper and hypochlorite ions [J].ACS Appl. Mater. Interfaces, 2019, 11(35):32489-32499.
ZHAO X H, TANG Q L, ZHU S J, et al. Controllable acidophilic dual-emission fluorescent carbonized polymer dots for selective imaging of bacteria [J].Nanoscale, 2019, 11(19):9526-9532.
WANG B, DI J, LU L, et al. Sacrificing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like PbBiO2Br for robust CO2 photoreduction [J].Appl. Catal. B: Environ., 2019, 254:551-559.
LI G, WANG F, LIU P, et al. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts [J].Chemosphere, 2018, 197:526-534.
TSAI W K, LAI Y S, TSENG P J, et al. Dual colorimetric and fluorescent authentication based on semiconducting polymer dots for anticounterfeiting applications [J].ACS Appl. Mater. Interfaces, 2017, 9(36):30918-30924.
VERMA M, CHAN Y H, SAHA S, et al. Recent developments in semiconducting polymer dots for analytical detection and NIR-Ⅱ fluorescence imaging [J].ACS Appl. Bio. Mater., 2021, 4(3):2142-2159.
YE F M, WU C F, JIN Y H, et al. A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging [J].Chem. Commun., 2012, 48(12):1778-1780.
FANG X F, JU B, LIU Z H, et al. Compact conjugated polymer dots with covalently incorporated metalloporphyrins for hypoxia bioimaging [J].ChemBioChem, 2019, 20(4):521-525.
ALIFU N, ZEBIBULA A, ZHANG H Q, et al. NIR-IIb excitable bright polymer dots with deep-red emission for in vivo through-skull three-photon fluorescence bioimaging [J].Nano Res., 2020, 13(10):2632-2640.
YU J B, RONG Y, KUO C T, et al. Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine [J].Anal. Chem., 2017, 89(1):42-56.
LV M, LI S, ZHAO H J, et al. Redox-responsive hyperbranched poly(amido amine) and polymer dots as a vaccine delivery system for cancer immunotherapy [J].J. Mater. Chem. B, 2017, 5(48):9532-9545.
WEI L, ZHANG D, ZHENG X F, et al. Fabrication of positively charged fluorescent polymer nanoparticles for cell imaging and gene delivery [J].Nanotheranostics, 2018, 2(2):157-167.
MA M, LEI M Z, TAN X X, et al. Theranostic liposomes containing conjugated polymer dots and doxorubicin for bio-imaging and targeted therapeutic delivery [J].RSC Adv., 2016, 6(3):1945-1957.
CHAN Y H, JIN Y H, WU C F, et al. Copper(Ⅱ) and iron(Ⅱ) ion sensing with semiconducting polymer dots [J].Chem. Commun., 2011, 47(10):2820-2822.
CHENG X, HUANG Y, LI D Y, et al. A sensitive polymer dots fluorescent sensor for determination of α-L-fucosidase activity in human serum [J].Sens. Actuators B: Chem., 2019, 288:38-43.
DONG C, XU M S, HUANG J H, et al. Dynamic thermosensitive solid-state photoluminescent carbonized polymer dots as temperature-responsive switches for sensor applications [J].ACS Appl. Nano Mater., 2020, 3(11):10560-10564.
WANG Z F, LIU Y, ZHEN S J, et al. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emitting diodes [J].Adv. Sci., 2020, 7(4):1902688-1-7.
TSENG P J, CHANG C L, CHAN Y H, et al. Design and synthesis of cycloplatinated polymer dots as photocatalysts for visible-light-driven hydrogen evolution [J].ACS Catal., 2018, 8(9):7766-7772.
ZHANG B Y, WANG F, ZHOU H, et al. Polymer dots compartmentalized in liposomes as a photocatalyst for in situ hydrogen therapy [J].Angew. Chem. Int. Ed., 2019, 58(9):2744-2748.
CALORI I R, BI H, TEDESCO A C. Expanding the limits of photodynamic therapy:the design of organelles and hypoxia-targeting nanomaterials for enhanced photokilling of cancer [J].ACS Appl. Bio. Mater., 2021, 4(1):195-228.
LIN Z, WANG H, YU M L, et al. Photoswitchable ultrahigh-brightness red fluorescent polymeric nanoparticles for information encryption, anti-counterfeiting and bioimaging [J].J. Mater. Chem. C, 2019, 7(37):11515-11521.
ABDOLLAHI A, ALIDAEI-SHARIF H, ROGHANI-MAMAQANI H, et al. Photoswitchable fluorescent polymer nanoparticles as high-security anticounterfeiting materials for authentication and optical patterning [J].J. Mater. Chem. C, 2020, 8(16):5476-5493.
BEIRAGHI A, NAJIBI-GEHRAZ S A. Purification and fractionation of carbon dots using pH-controlled cloud point extraction technique [J].J. Nanostruct., 2020, 10(1):107-118.
0
Views
487
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution