浏览全部资源
扫码关注微信
1.太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
2.中国科学院 可再生能源重点实验室, 广东 广州 510640
3.中国电子科技集团公司 第二研究所, 山西 太原 030024
4.太原理工大学 材料科学与工程学院, 山西 太原 030024
Published:01 June 2021,
Received:27 January 2021,
Revised:28 February 2021,
移动端阅览
LING-WEI GAO, GUANG-MEI ZHAI, JIN-TAO REN, et al. Effect of Potassium Iodide on Film Quality and Photovoltaic Performance of Perovskite Solar Cells Fabricated
LING-WEI GAO, GUANG-MEI ZHAI, JIN-TAO REN, et al. Effect of Potassium Iodide on Film Quality and Photovoltaic Performance of Perovskite Solar Cells Fabricated
有机-无机杂化钙钛矿太阳电池因具有光电转化效率高和制备成本低廉等优点而备受关注。钙钛矿薄膜中的缺陷是限制钙钛矿电池性能进一步提升的重要因素,而缺陷调控又依赖于薄膜制备方法的发展和进步。两步法是制备钙钛矿薄膜和电池的主要方法之一,但目前对在两步法前驱液中引入添加剂如何影响钙钛矿薄膜结晶过程和缺陷密度的认识不足。本工作致力于利用光谱、X射线衍射、扫描电镜和电学测试等技术手段研究在两步法的铅盐溶液中引入碘化钾(KI)对卤化铅溶液、钙钛矿转化、缺陷密度和电池性能的影响。实验结果表明,适量KI的引入有利于高碘配位数铅碘配合物的生成,促进卤化铅向钙钛矿相的室温转化,并有效降低钙钛矿薄膜中的缺陷密度,钙钛矿电池的光电转化效率从无KI时的17.49%提高到19.17%。本工作的研究结果不仅有助于加深对两步法制备钙钛矿过程中结晶规律的理解,而且有助于进一步推动钙钛矿薄膜质量和器件性能的提升。
Organic-inorganic hybrid perovskite solar cells have attracted much attention due to their high photoelectric conversion efficiency and low preparation cost. An important factor limiting the further performance improvement of perovskite solar cells is defects existed in perovskite active layers. The passivation of these defects depends on the development of perovskite preparation techniques. The two-step method is one of the most popular methods to prepare perovskite films and photovoltaic devices. In order to fabricate high-quality perovskite films and high-efficiency solar cells
the modified two-step method
via
introducing additives has been developed. However
effects of additives introduced into the lead halide precursor on the crystallization process and defect density of perovskite films fabricated
via
the two-step method are not yet fully understood. In this work
the impacts of potassium iodide(KI) on colloidal properties of the lead halide precursor
perovskite transformation
film quality and cell performance were investigated by means of spectroscopy
X-ray diffraction
scanning electron microscopy and various electrical measurements. Our results show that the introduction of appropriate amount of KI facilitates the formation of iodide-rich iodoplumbates
which is beneficial to accelerating perovskite transformation from lead halide and improving perovskite film quality. The photoelectric conversion efficiency of the solar cell incorporating appropriate KI has been increased to 19.17% from 17.49% for the control device. The results of this work not only help to deepen the understanding of the crystallization of perovskite films in the two-step preparation process
but also help to further improve perovskite film quality and device performance.
钙钛矿太阳电池碘化钾两步法缺陷钝化碘铅酸盐
perovskite solar cellspotassium iodide"two-step" depositiondefect passivationiodoplumbates
SEOK S I, GRÄTZEL M, PARK N G. Methodologies toward highly efficient perovskite solar cells [J].Small, 2018, 14(20):1704177.
MA C Q, PARK N G. A realistic methodology for 30% efficient perovskite solar cells [J].Chem, 2020, 6(6):1254-1264.
李志成, 王亚凌, 杨银, 等. 利用吡啶添加剂提高钙钛矿太阳能电池的光伏性能 [J].发光学报, 2017, 38(11):1503-1509.
LI Z C, WANG Y L, YANG Y, et al. Improvement of the performance of planar heterojunction perovskite solar cells by using pyridine as additive [J].Chin. J. Lumin., 2017, 38(11):1503-1509. (in Chinese)
薛启帆, 孙辰, 胡志诚, 等. 钙钛矿太阳电池研究进展:薄膜形貌控制与界面工程 [J].化学学报, 2015, 73(3):179-192.
XUE Q F, SUN C, HU Z C, et al. Recent advances in perovskite solar cells:morphology control and interfacial engineering [J].Acta Chim. Sinica, 2015, 73(3):179-192. (in Chinese)
YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange [J].Science, 2015, 348(6240):1234-1237.
XIAO M, HUANG F Z, HUANG W C, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells [J].Angew. Chem. Int. Ed., 2014, 53(37):9898-9903.
ZHANG C F, ZHAI G M, ZHANG Y, et al. Enhanced device performance and stability of perovskite solar cells with low-temperature ZnO/TiO2 bilayered electron transport layers [J].RSC Adv., 2018, 8(41):23019-23026.
WU Y Z, ISLAM A, YANG X D, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition [J].Energy Environ. Sci., 2014, 7(9):2934-2938.
ZHANG J T, ZHAI G M, GAO W H, et al. Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction [J].J. Mater. Chem. A, 2017, 5(8):4190-4198.
BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].Nature, 2013, 499(7458):316-319.
QI W J, ZHOU X, LI J L, et al. Inorganic material passivation of defects toward efficient perovskite solar cells [J].Sci. Bull., 2020, 65(23):2022-2032.
YIN W J, SHI T T, YAN Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber [J].Appl. Phys. Lett., 2014, 104(6):063903-1-4.
ZHANG M, BING J M, CHO Y, et al. Synergistic effect of potassium and iodine from potassium triiodide complex additive on gas-quenched perovskite solar cells [J].Nano Energy, 2019, 63:103853.
SI H N, XU C Z, QU Y, et al. Dual-passivation of ionic defects for highly crystalline perovskite [J].Nano Energy, 2010, 68:104320.
MA Z, XIAO Z, ZHOU W Y, et al. Efficient CH3NH3PbI3-x(SeCN)x perovskite solar cells with improved crystallization and defect passivation [J].J. Alloys Compd., 2020, 822:153539.
WANG Y B, WU T H, BARBAUD J, et al. Stabilizing heterostructures of soft perovskite semiconductors [J].Science, 2019, 365(6454):687-691.
ZHU H W, LIU Y H, EICKEMEYER F T, et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency [J].Adv. Mater., 2020, 32(12):1907757-1-8.
LIANG L S, LUO H T, HU J J, et al. Efficient perovskite solar cells by reducing interface-mediated recombination:a bulky amine approach [J].Adv. Energy Mater., 2020, 10(14):2000197.
WANG F Y, YANG M F, YANG S, et al. Iodine-assisted antisolvent engineering for stable perovskite solar cells with efficiency >21.3% [J].Nano Energy, 2020, 67:104224.
BU T L, LIU X P, ZHOU Y, et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells [J].Energy Environ. Sci., 2017, 10(12):2509-2515.
ZHAO W G, YAO Z, YU F Y, et al. Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells [J].Adv. Sci., 2018, 5(2):1700131-1-7.
CHEN S S, XIAO X, CHEN B, et al. Crystallization in one-step solution deposition of perovskite films:upward or downward? [J].Sci. Adv., 2021, 7(4):eabb2412-1-8.
UMMADISINGU A, GRÄTZEL M. Revealing the detailed path of sequential deposition for metal halide perovskite formation [J].Sci. Adv., 2018, 4(2):e1701402-1-9.
KEARNEY K, SEO G, MATSUSHIMA T, et al. Computational analysis of the interplay between deep level traps and perovskite solar cell efficiency [J].J. Am. Chem. Soc., 2018, 140(46):15655-15660.
LONG C Y, HE M S, HUANG K Q, et al. Two-step processed efficient potassium and cesium-alloyed quaternary cations perovskite solar cells [J].Synth. Met., 2020, 269:116564.
YANG W S, PARK B W, JUNG E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells [J].Science, 2017, 356(6345):1376-1379.
QIN P L, ZHANG J L, YANG G, et al. Potassium-intercalated rubrene as a dual-functional passivation agent for high efficiency perovskite solar cells [J].J. Mater. Chem. A, 2019, 7(4):1824-1834.
RAHIMNEJAD S, KOVALENKO A, FORÉS S M, et al. Coordination chemistry dictates the structural defects in lead halide perovskites [J].ChemPhysChem, 2016, 17(18):2795-2798.
KUAI L, WANG Y S, ZHANG Z X, et al. Passivating crystal boundaries with potassium-rich phase in organic halide perovskite [J].Solar RRL, 2019, 3(5):1900053-1-9.
ZHANG Y, ZHAI G M, GAO L W, et al. Improving performance of perovskite solar cells based on ZnO nanorods via rod-length control and sulfidation treatment [J].Mater. Sci. Semicond. Process., 2020, 117:105205.
NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells [J].Nano Lett., 2013, 13(4):1764-1769.
LI C, GUERRERO A, ZHONG Y, et al. Origins and mechanisms of hysteresis in organometal halide perovskites [J].J. Phys.:Condens. Matter, 2017, 29(19):193001-1-47.
ABDI-JALEBI M, ANDAJI-GARMAROUDI Z, CACOVICH S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation [J].Nature, 2018, 555(7697):497-501.
ABDI-JALEBI M, ANDAJI-GARMAROUDI Z, PEARSON A J, et al. Potassium- and rubidium-passivated alloyed perovskite films:optoelectronic properties and moisture stability [J].ACS Energy Lett., 2018, 3(11):2671-2678.
KOKIL A, YANG K, KUMAR J. Techniques for characterization of charge carrier mobility in organic semiconductors [J].J. Polym. Sci. Part B:Polym. Phys., 2012, 50(15):1130-1144.
WETZELAER G J A H, SCHEEPERS M, SEMPERE A M, et al. Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells [J].Adv. Mater., 2015, 27(11):1837-1841.
IP A H, THON S M, HOOGLAND S, et al. Hybrid passivated colloidal quantum dot solids [J].Nat. Nanotechnol., 2012, 7(9):577-582.
SHAO Z M, ZHAI G M, ZHENG L L, et al. Tailoring perovskite conversion and grain growth by in situ solvent assisted crystallization and compositional variation for highly efficient perovskite solar cells [J].Org. Electron., 2019, 69:208-215.
0
Views
563
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution