1.重庆师范大学 物理与电子工程学院, 重庆 401331
2.重庆邮电大学 光电工程学院, 重庆 400065
3.中国科学院上海光学精密机械研究所 强场激光物理国家重点实验室, 上海 201800
4.中国科学院大学 杭州高等研究院, 浙江 杭州 310024
扫 描 看 全 文
Jie YANG, Ming-yu PI, Ding-ke ZHANG, et al. Recent Progress on Low-dimensional Perovskite Photodetectors. [J]. Chinese Journal of Luminescence 42(6):755-773(2021)
Jie YANG, Ming-yu PI, Ding-ke ZHANG, et al. Recent Progress on Low-dimensional Perovskite Photodetectors. [J]. Chinese Journal of Luminescence 42(6):755-773(2021) DOI: 10.37188/CJL.20210033.
近年来,三维铅卤钙钛矿由于其优异的光电子性能,作为光电器件(如太阳能电池、发光二极管和激光器等)的新型半导体材料被广泛研究,然而三维钙钛矿的铅毒性以及稳定性差严重阻碍了其商业化应用。低维钙钛矿材料由于其优异的光电性能以及稳定性,在光电应用领域引起了广泛关注。除了用于光伏和发光二极管以外,低维钙钛矿已成为未来光电探测器有前途的候选者。本文对低维钙钛矿的结构、光电探测器的种类以及性能参数进行简要介绍,重点阐述了低维钙钛矿光电探测器的研究进展。同时,对本研究领域未来的发展方向进行了讨论。
Recently, three-dimensional lead-halide perovskites have been extensively studied as new semiconductor materials for optoelectronic devices(such as solar cells, light emitting diodes and lasers) for their exceptional optical and electronic properties. However, the lead toxicity and poor stability of three-dimensional lead-halide perovskites have severely hindered their commercial applications. Low-dimensional perovskite materials have attracted widespread attention in the field of optoelectronic applications due to their excellent photoelectric properties and enhanced stability. In addition to photovoltaics and light-emitting diodes, low-dimensional perovskite has become a promising candidate for future photodetectors. This paper briefly introduces the structure of low-dimensional perovskites, the types and performance parameters of photodetectors, and focuses on the research progress of low-dimensional perovskite photodetectors. Meanwhile, the promising future directions in this research field are discussed.
低维钙钛矿材料稳定光电探测器
low-dimensionalperovskitesstabilityphotodetector
KIND H, YAN H, MESSER B, et al. Nanowire ultraviolet photodetectors and optical switches [J].Adv. Mater., 2002, 14(2):158-160.
MUELLER T, XIA F N, AVOURIS P. Graphene photodetectors for high-speed optical communications [J].Nat. Photonics, 2010, 4(5):297-301.
POSPISCHIL A, HUMER M, FURCHI M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands [J].Nat. Photonics, 2013, 7(11):892-896.
WANG J J, CAO F F, JIANG L, et al. High performance photodetectors of individual inse single crystalline nanowire [J].J. Am. Chem. Soc., 2009, 131(43):15602-15603.
LUO H L, CHANG Y C, WONG K S, et al. Ultrasensitive Si phototransistors with a punchthrough base [J].Appl. Phys. Lett., 2001, 79(6):773-775.
AVOURIS P, FREITAG M, PEREBEINOS V. Carbon-nanotube photonics and optoelectronics [J].Nat. Photonics, 2008, 2(6):341-350.
VAN HOVE J M, HICKMAN R, KLAASSEN J J, et al. Ultraviolet-sensitive, visible-blind GaN photodiodes fabricated by molecular beam epitaxy [J].Appl. Phys. Lett., 1997, 70(17):2282-2284.
KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain [J].Nat. Nanotechnol., 2012, 7(6):363-368.
KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J].Nat. Nanotechnol., 2014, 9(10):780-793.
OGURA M. Hole injection Type InGaAs-InP near infrared photo-FET (HI-FET) [J].IEEE J. Quantum Electron., 2010, 46(4):562-569.
HUANG H, SUSHA A S, KERSHAW S V, et al. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature [J].Adv. Sci., 2015, 2(9):1500194-1-5.
STOUMPOS C C, FRAZER L, CLARK D J, et al. Hybrid germanium iodide perovskite semiconductors:active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties [J].J. Am. Chem. Soc., 2015, 137(21):6804-6819.
STOUMPOS C C, KANATZIDIS M G. Halide perovskites:poor man's high-performance semiconductors [J].Adv. Mater., 2016, 28(28):5778-5793.
ZHU F, MEN L, GUO Y J, et al. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals [J].ACS Nano, 2015, 9(3):2948-2959.
POLAVARAPU L, NICKEL B, FELDMANN J, et al. Advances in quantum-confined perovskite nanocrystals for optoelectronics [J].Adv. Energy Mater., 2017, 7(16):1700267-1-9.
JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells [J].Nat. Photonics, 2019, 13(7):460-466.
JUNG E H, JEON N J, PARK E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) [J].Nature, 2019, 567(7749):511-515.
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J].J. Am. Chem. Soc., 2009, 131(17):6050-6051.
ONO L K, LIU S Z, QI Y B. Reducing detrimental defects for high-performance metal halide perovskite solar cells [J].Angew. Chem. Int. Ed., 2020, 59(17):6676-6698.
LIANG J, LIU J, JIN Z. All-inorganic halide perovskites for optoelectronics:progress and prospects [J].Solar RRL, 2017, 1(10):1700086.
KUMAWAT N K, GUPTA D, KABRA D. Recent advances in metal halide-based perovskite light-emitting diodes [J].Energy Technol., 2017, 5(10):1734-1749.
CHO H, JEONG S H, PARK M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes [J].Science, 2015, 350(6265):1222-1225.
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J].Nat. Nanotechnol., 2014, 9(9):687-692.
VELDHUIS S A, BOIX P P, YANTARA N, et al. Perovskite materials for light-emitting diodes and lasers [J].Adv. Mater., 2016, 28(32):6804-6834.
XING G C, MATHEWS N, LIM S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing [J].Nat. Mater., 2014, 13(5):476-480.
STRANKS S D, SNAITH H J. Metal-halide perovskites for photovoltaic and light-emitting devices [J].Nat. Nanotechnol., 2015, 10(5):391-402.
SAPAROV B, MITZI D B. Organic-inorganic perovskites:structural versatility for functional materials design [J].Chem. Rev., 2016, 116(7):4558-4596.
CHENG Z Y, LIN J. Layered organic-inorganic hybrid perovskites:structure, optical properties, film preparation, patterning and templating engineering [J].CrystEngComm, 2010, 12(10):2646-2662.
YANG W S, PARK B W, JUNG E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells [J].Science, 2017, 356(6345):1376-1379.
CHEN W W, HAO J Y, HU W, et al. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure [J].Small, 2017, 13(21):1604085.
HU Z P, LIU Z Z, BIAN Y, et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability [J].Adv. Opt. Mater., 2018, 6(3):1700997-1-9.
LI Y Z, ZHANG Z B, ZHOU Y, et al. Enhanced performance and stability of ambient-processed CH3NH3PbI3-x(SCN)x planar perovskite solar cells by introducing ammonium salts [J].Appl. Surf. Sci., 2020, 513:145790.
MEI A Y, LI X, LIU L F, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability [J].Science, 2014, 345(6194):295-298.
YANG J, LIU Z Z, PI M Y, et al. High efficiency up-conversion random lasing from formamidinium lead bromide/amino-mediated silica spheres composites [J].Adv. Opt. Mater., 2020, 8(12):2000290.
QUAN L N, MA D X, ZHAO Y B, et al. Edge stabilization in reduced-dimensional perovskites [J].Nat. Commun., 2020, 11(1):170.
ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids [J].Mater. Sci. Eng.: R: Rep., 2019, 137:38-65.
QUAN L N, YUAN M J, COMIN R, et al. Ligand-stabilized reduced-dimensionality perovskites [J].J. Am. Chem. Soc., 2016, 138(8):2649-2655.
LEGUY A M A, AZARHOOSH P, ALONSO M I, et al. Experimental and theoretical optical properties of methylammonium lead halide perovskites [J].Nanoscale, 2016, 8(12):6317-6327.
BAKTHAVATSALAM R, HARIS M P U, SHAIKH S R, et al. Ligand structure directed dimensionality reduction (2D →1D) in lead bromide perovskite [J].J. Phys. Chem. C, 2020, 124(3):1888-1897.
HAUTZINGER M P, DAI J, JI Y J, et al. Two-dimensional lead halide perovskites templated by a conjugated asymmetric diammonium [J].Inorg. Chem., 2017, 56(24):14991-14998.
LIN H R, ZHOU C K, TIAN Y, et al. Low-dimensional organometal halide perovskites [J].ACS Energy Lett., 2018, 3(1):54-62.
YAO D S, MAO X, WANG X X, et al. Dimensionality-controlled surface passivation for enhancing performance and stability of perovskite solar cells via triethylenetetramine vapor [J].ACS Appl. Mater. Interfaces, 2020, 12(5):6651-6661.
KUMAWAT N K, TRIPATHI M N, WAGHMARE U, et al. Structural, optical, and electronic properties of wide bandgap perovskites:experimental and theoretical investigations [J].J. Phys. Chem. A, 2016, 120(22):3917-3923.
GUO Z H, LI J Z, PAN R K, et al. All-inorganic copper(Ⅰ)-based ternary metal halides:promising materials toward optoelectronics [J].Nanoscale, 2020, 12(29):15560-15576.
ÖZ S, HEBIG J C, JUNG E, et al. Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications [J].Sol. Energy Mater. Sol. Cells, 2016, 158:195-201.
FU P, HUANG M, SHANG Y, et al. Organic-inorganic layered and hollow tin bromide perovskite with tunable broadband emission [J].ACS Appl. Mater. Inter., 2018, 10(40):34363-34369.
JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure [J].Adv. Mater., 2018, 30(43):1804547-1-6.
CAO D H, STOUMPOS C C, FARHA O K, et al. 2D homologous perovskites as light-absorbing materials for solar cell applications [J].J. Am. Chem. Soc., 2015, 137(24):7843-7850.
SAIDAMINOV M I, MOHAMMED O F, BAKR O M. Low-dimensional-networked metal halide perovskites:the next big thing [J].ACS Energy Lett., 2017, 2(4):889-896.
CHEN Y N, SUN Y, PENG J J, et al. 2D ruddlesden-popper perovskites for optoelectronics [J].Adv. Mater., 2018, 30(2):1703487.
JIANG Y Z, QIN C C, CUI M H, et al. Spectra stable blue perovskite light-emitting diodes [J].Nat. Commun., 2019, 10(1):1868.
HINTERMAYR V A, RICHTER A F, EHRAT F, et al. Tuning the optical properties of perovskite nanoplatelets through composition and thickness by ligand-assisted exfoliation [J].Adv. Mater., 2016, 28(43):9478-9485.
DOU L T, WONG A B, YU Y, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites [J].Science, 2015, 349(6255):1518-1521.
HONG K, VAN LE Q, KIM S Y, et al. Low-dimensional halide perovskites:review and issues [J].J. Mater. Chem. C, 2018, 6(9):2189-2209.
LAN C Y, ZHOU Z Y, WEI R J, et al. Two-dimensional perovskite materials:from synthesis to energy-related applications [J].Mater. Today Energy, 2019, 11:61-82.
LUO S Q, WANG J F, YANG B, et al. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device [J].Front. Phys., 2019, 14(5):53401.
CAO D H, STOUMPOS C C, YOKOYAMA T, et al. Thin films and solar cells based on semiconducting two-dimensional ruddlesden-popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites [J].ACS Energy Lett., 2017, 2(5):982-990.
STOUMPOS C C, CAO D H, CLARK D J, et al. Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors [J].Chem. Mater., 2016, 28(8):2852-2867.
BLANCON J C, TSAI H, NIE W, et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites [J].Science, 2017, 355(6331):1288-1292.
BENIN B M, DIRIN D N, MORAD V, et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides [J].Angew. Chem. Int. Ed., 2018, 57(35):11329-11333.
YUAN Z, SHU Y, XIN Y, et al. Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions [J].Chem. Commun., 2016, 52(20):3887-3890.
ZHANG Z X, LI C, LU Y, et al. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap [J].J. Phys. Chem. Lett., 2019, 10(18):5343-5350.
LIN H R, ZHOU C K, NEU J, et al. Bulk assembly of corrugated 1d metal halides with broadband yellow emission [J].Adv. Opt. Mater., 2019, 7(6):1801474-1-5.
NEOGI I, BRUNO A, BAHULAYAN D, et al. Broadband-emitting 2D hybrid organic-inorganic perovskite based on cyclohexane-bis(methylamonium) cation [J].ChemSusChem, 2017, 10(19):3765-3772.
BARKAOUI H, ABID H, YANGUI A, et al. Yellowish white-light emission involving resonant energy transfer in a new one-dimensional hybrid material:(C9H10N2)PbCl4 [J].J. Phys. Chem. C, 2018, 122(42):24253-24261.
TANAKA K, OZAWA R, UMEBAYASHI T, et al. One-dimensional excitons in inorganic-organic self-organized quantum-wire crystals [NH2C(I)=NH2]3PbI5 and [CH3SC(=NH2)NH2]3PbI5 [J].Phys. E: Low-Dimens. Syst. Nanostruct., 2005, 25(4):378-383.
ZHOU C K, TIAN Y, KHABOU O, et al. Manganese-doped one-dimensional organic lead bromide perovskites with bright white emissions [J].ACS Appl. Mater. Interfaces, 2017, 9(46):40446-40451.
WU G H, ZHOU C K, MING W M, et al. A one-dimensional organic lead chloride hybrid with excitation-dependent broadband emissions [J].ACS Energy Lett., 2018, 3(6):1443-1449.
ZHOU C K, TIAN Y, WANG M C, et al. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation [J].Angew. Chem. Int. Ed., 2017, 56(31):9018-9022.
NIKL M, MIHOKOVA E, NITSCH K, et al. Photoluminescence of Cs4PbBr6 crystals and thin films [J].Chem. Phys. Lett., 1999, 306(5-6):280-284.
SAIDAMINOV M I, ALMUTLAQ J, SARMAH S, et al. Pure Cs4PbBr6:highly luminescent zero-dimensional perovskite solids [J].ACS Energy Lett., 2016, 1(4):840-845.
YANG H Z, ZHANG Y H, PAN J, et al. Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities [J].Chem. Mater., 2017, 29(21):8978-8982.
YIN J, ZHANG Y H, BRUNO A, et al. Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals [J].ACS Energy Lett., 2017, 2(12):2805-2811.
ZHANG Y H, SAIDAMINOV M I, DURSUN I, et al. Zero-dimensional Cs4PbBr6 perovskite nanocrystals [J].J. Phys. Chem. Lett., 2017, 8(5):961-965.
ZHOU C K, LIN H R, TIAN Y, et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency [J].Chem. Sci., 2018, 9(3):586-593.
DE WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites:sharp optical absorption edge and its relation to photovoltaic performance [J].J. Phys. Chem. Lett., 2014, 5(6):1035-1039.
HU X, ZHANG X D, LIANG L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite [J].Adv. Funct. Mater., 2014, 24(46):7373-7380.
DOU L T, YANG Y, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J].Nat. Commun., 2014, 5(1):5404.
HOU Y, WANG L M, ZOU X M, et al. Substantially improving device performance of all-inorganic perovskite-based phototransistors via indium tin oxide nanowire incorporation [J].Small, 2020, 16(5):1905609.
ZHENG Z, ZHUGE F W, WANG Y G, et al. Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector [J].Adv. Funct. Mater., 2017, 27(43):1703115-1-12.
ZHOU J C, CHU Y L, HUANG J. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors [J].ACS Appl. Mater. Interfaces, 2016, 8(39):25660-25666.
FENG J G, GONG C, GAO H F, et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors [J].Nat. Electron., 2018, 1(7):404-410.
FU X W, JIAO S L, JIANG Y, et al. Large-scale growth of ultrathin low-dimensional perovskite nanosheets for high-detectivity photodetectors [J].ACS Appl. Mater. Interfaces, 2020, 12(2):2884-2891.
LIU T J, TANG W D, LUONG S, et al. High charge carrier mobility in solution processed one-dimensional lead halide perovskite single crystals and their application as photodetectors [J].Nanoscale, 2020, 12(17):9688-9695.
CHEN C, ZHANG X Q, WU G, et al. Visible-light ultrasensitive solution-prepared layered organic-inorganic hybrid perovskite field-effect transistor [J].Adv. Opt. Mater., 2017, 5(2):1600539-1-5.
PRADHAN B, KUMAR G S, SAIN S, et al. Size tunable cesium antimony chloride perovskite nanowires and nanorods [J].Chem. Mater., 2018, 30(6):2135-2142.
YANG J, KANG W, LIU Z Z, et al. High-performance deep ultraviolet photodetector based on a one-dimensional lead-free halide perovskite CsCu2I3 film with high stability [J].J. Phys. Chem. Lett., 2020, 11(16):6880-6886.
LI Z Q, LI Z L, SHI Z F, et al. Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu2I3 single crystal with 1D electronic structure [J].Adv. Funct. Mater., 2020, 30(28):2002634-1-10.
XIE C, YAN F. Flexible photodetectors based on novel functional materials [J].Small, 2017, 13(43):1701822-1-36.
ZHANG C, XIE Y C, DENG H, et al. Monolithic and flexible ZnS/SnO2 ultraviolet photodetectors with lateral graphene electrodes [J].Small, 2017, 13(18):1604197.
WANG J, LI J Z, LAN S G, et al. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors [J].ACS Nano, 2019, 13(5):5473-5484.
TAN Z J, WU Y, HONG H, et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector [J].J. Am. Chem. Soc., 2016, 138(51):16612-16615.
FU Q D, WANG X L, LIU F C, et al. Ultrathin ruddlesden-popper perovskite heterojunction for sensitive photodetection [J].Small, 2019, 15(39):1902890.
FANG C, WANG H Z, SHEN Z X, et al. High-performance photodetectors based on lead-free 2D ruddlesden-popper perovskite/MoS2 heterostructures [J].ACS Appl. Mater. Interfaces, 2019, 11(8):8419-8427.
CHANG C Y, TSAO F C, PAN C J, et al. Electroluminescence from ZnO nanowire/polymer composite p-n junction [J].Appl. Phys. Lett., 2006, 88(17):173503-1-3.
SHAO D L, ZHU W G, XIN G Q, et al. A high performance UV-visible dual-band photodetector based on an inorganic Cs2SnI6 perovskite/ZnO heterojunction structure [J].J. Mater. Chem. C, 2020, 8(5):1819-1825.
LIANG W Q, SHI Z F, LI Y, et al. Strategy of all-inorganic Cs3Cu2I5/Si-core/shell nanowire heterojunction for stable and ultraviolet-enhanced broadband photodetectors with imaging capability [J].ACS Appl. Mater. Interfaces, 2020, 12(33):37363-37374.
LIU Y C, ZHANG Y X, YANG Z, et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors [J].Nat. Commun., 2018, 9(1):5302.
DONG R T, LAN C Y, LI F Z, et al. Incorporating mixed cations in quasi-2D perovskites for high-performance and flexible photodetectors [J].Nanoscale Horiz., 2019, 4(6):1342-1352.
WEI S L, WANG F, ZOU X M, et al. Flexible quasi-2D perovskite/IGZO phototransistors for ultrasensitive and broadband photodetection [J].Adv. Mater., 2020, 32(6):1907527-1-9.
WEI Y Z, FENG G T, MAO P, et al. Lateral photodetectors based on double-cable polymer/two-dimensional perovskite heterojunction [J].ACS Appl. Mater. Interfaces, 2020, 12(7):8826-8834.
ZHANG W C, SUI Y, KOU B, et al. Large-area exfoliated lead-free perovskite-derivative single-crystalline membrane for flexible low-defect photodetectors [J].ACS Appl. Mater. Interfaces, 2020, 12(8):9141-9149.
YU D J, CAO F, GU Y, et al. Broadband and sensitive two-dimensional halide perovskite photodetector for full-spectrum underwater optical communication [J].Nano Res., 2021, 14(4):1210-1217.
LIU C K, LOI H L, CAO J P, et al. High-performance quasi-2D perovskite/single-walled carbon nanotube phototransistors for low-cost and sensitive broadband photodetection [J].Small Struct., 2021, 2(2):2000084-1-8.
LIU P, LIU Y, ZHANG S W, et al. Lead-free Cs3Sb2Br9 single crystals for high performance narrowband photodetector [J].Adv. Opt. Mater., 2020, 8(21):2001072.
LI Y, SHI Z F, WANG L T, et al. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors [J].Mater. Horiz., 2020, 7(6):1613-1622.
ZHOU J, LUO J J, RONG X M, et al. Lead-free perovskite derivative Cs2SnCl6-xBrx single crystals for narrowband photodetectors [J].Adv. Opt. Mater., 2019, 7(10):1900139
LI Y, SHI Z F, LIANG W Q, et al. Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites [J].Mater. Horiz., 2020, 7(2):530-540.
0
Views
343
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution