浏览全部资源
扫码关注微信
1.天津大学化工学院 化学工程联合国家重点实验室, 天津 300350;
2.深圳大学 化学与环境工程学院, 广东 深圳 518037
Published:01 March 2021,
Received:10 January 2021,
Revised:02 February 2021,
移动端阅览
JIA-HUI WANG, XIAO-XUAN ZENG, YUE WU, et al. Synthesis and Characterization of pH-responsive Material with Aggregation-induced Emission Property. [J]. Chinese journal of luminescence, 2021, 42(3): 311-318.
JIA-HUI WANG, XIAO-XUAN ZENG, YUE WU, et al. Synthesis and Characterization of pH-responsive Material with Aggregation-induced Emission Property. [J]. Chinese journal of luminescence, 2021, 42(3): 311-318. DOI: 10.37188/CJL.20210020.
聚集诱导发光(Aggregation-induced emission,AIE)由于在超分子化学、生物学以及材料科学方面起着非常重要的作用而受到人们的广泛关注。为拓展AIE分子在生物机体的内环境或自然环境中的应用,水溶性的AIE分子更是受到高度关注。本工作合成了以二氰基二苯乙烯基苯为发光基元、磺酸基为亲水基元的水溶性AIE分子DCS-SO
<math id="M1"><mn>3</mn></math>
,并对其光物理性能进行了研究。光谱实验结果表明,
<math id="M2"><mrow><msubsup><mrow><mtext>DCS-SO</mtext></mrow><mn>3</mn><mo>−</mo></msubsup></mrow></math>
能够以水作为良溶剂,并伴随着四氢呋喃的加入呈现聚集诱导发光的性质。同时,由于磺酸基具有可逆结合质子的能力,DCS-SO
<math id="M3"><mn>3</mn></math>
可在酸性环境中结合H
+
发生质子化,以DCS-SO
3
H形式存在;在碱性环境中脱去质子,以
<math id="M4"><mrow><msubsup><mrow><mtext>DCS-SO</mtext></mrow><mn>3</mn><mo>−</mo></msubsup></mrow></math>
的形式存在。因此,DCS-SO
<math id="M5"><mn>3</mn></math>
是一种具有AIE性质和pH响应性能的新型亲水性材料。
Aggregation-induced emission(AIE) luminogens have attracted considerable attention for its important role in supramolecular chemistry
biology and materials science
especially
those with water-solubility which were highlighted because of the application in the internal environment of biological organism or natural environment. In this work
a water-soluble AIE molecule(
<math id="M6"><mrow><msubsup><mrow><mtext>DCS-SO</mtext></mrow><mn>3</mn><mo>−</mo></msubsup></mrow></math>
) with dicyanodistyrylbenzene(DCS) as the luminescent moiety and sulfonic group as the hydrophilic unit was synthesized
and its optical properties were systematically studied. Spectroscopic studies suggested that the addition of the poor solvent acetonitrile to the aqueous solution caused the formation of
<math id="M7"><mrow><msubsup><mrow><mtext>DCS-SO</mtext></mrow><mn>3</mn><mo>−</mo></msubsup></mrow></math>
nanoparticles and the AIE phenomena were demonstrated. Furthermore
as the sulfonic group has the ability to bind protons reversibly
the absorption peaks of DCS-SO
<math id="M8"><mn>3</mn></math>
were blue-shift after the addition of acid. Moreover
the color change process was reversible upon pH change. By making use of the AIE property and chemical reactivity towards OH
-
/H
+
<math id="M9"><mrow><msubsup><mrow><mtext>DCS-SO</mtext></mrow><mn>3</mn><mo>−</mo></msubsup></mrow></math>
is able to respond pH within the pH range from 1 to 13 by showing different emission colors and intensities: strong to weak blue emission within the pH range from 1 to 7 and weak blue emission to strong orange emission within the pH range from 8 to 13. According to AIE mechanism
the reason for pH-mediated optical properties of
<math id="M10"><mrow><msubsup><mrow><mtext>DCS-SO</mtext></mrow><mn>3</mn><mo>−</mo></msubsup></mrow></math>
was studied. Therefore
<math id="M11"><mrow><msubsup><mrow><mtext>DCS-SO</mtext></mrow><mn>3</mn><mo>−</mo></msubsup></mrow></math>
is a new material with the AIE and pH-responsive properties.
聚集诱导发光pH响应二氰基二苯乙烯基苯酸碱调控
aggregation-induced emissionpH-responsivedicyanodistyrylbenzeneacid-base regulation
YUAN W Z, LU P, CHEN S M, et al. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission:development of highly efficient light emitters in the solid state [J].Adv. Mater., 2010,22(19):2159-2163.
CHEN G, LI W B, ZHOU T R, et al. Conjugation-induced rigidity in twisting molecules:filling the gap between aggregation-caused quenching and aggregation-induced emission [J].Adv. Mater., 2015,27(30):4496-4501.
WU Y, YOU L H, YU Z Q, et al. Rational design of circularly polarized luminescent aggregation-induced emission luminogens (AIEgens):promoting the dissymmetry factor and emission efficiency synchronously [J].ACS Mater. Lett., 2020,2(5):505-510.
NING Z, CHEN Z, ZHANG Q, et al. Aggregation-induced emission (AIE)-active starburst triarylamine fluorophores as potential non-doped red emitters for organic light-emitting diodes and Cl2 gas chemodosimeter [J].Adv. Funct. Mater., 2007,17(18):3799-3807.
MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission:together we shine,united we soar! [J].Chem. Rev., 2015,115(21):11718-11940.
JING H, LU L, FENG Y K, et al. Synthesis,aggregation-induced emission,and liquid crystalline structure of tetraphenylethylene-surfactant complex via ionic self-assembly [J].J. Phys. Chem. C, 2016,120(48):27577-27586.
WU H W, CHEN Z, CHI W J, et al. Structural engineering of luminogens with high emission efficiency both in solution and in the solid state [J].Angew. Chem. Int. Ed., 2019,58(33):11419-11423.
赵阳, 曾雨婷, 任相魁. 四苯基乙烯室温发光液体材料的制备与表征 [J].化学工业与工程, 2020,37(5):1-6.
ZHAO Y, ZENG Y T, REN X K. Preparation and characterization of a new tetraphenylethylene derivative as room-temperature luminescent liquid material [J].Chem. Ind. Eng., 2020,37(5):1-6. (in Chinese)
GENG L Y, ZHAO Y, KAMYA E, et al. Turn-off/on fluorescent sensors for Cu2+ and ATP in aqueous solution based on a tetraphenylethylene derivative [J].J. Mater. Chem. C, 2019,7(9):2640-2645.
YU M X, HUANG R S, GUO J J, et al. Promising applications of aggregation-induced emission luminogens in organic optoelectronic devices [J].PhotoniX, 2020,1(1):11-1-33.
WANG D, TANG B Z. Aggregation-induced emission luminogens for activity-based sensing [J].Acc. Chem. Res., 2019,52(9):2559-2570.
XUE W X, ZHANG G X, ZHANG D Q, et al. A new label-free continuous fluorometric assay for trypsin and inhibitor screening with tetraphenylethene compounds [J].Org. Lett., 2010,12(10):2274-2277.
SUN Y Q, CHEN M L, LIU J, et al. Nitroolefin-based coumarin as a colorimetric and fluorescent dual probe for biothiols [J].Chem. Commun., 2011,47(39):11029-11031.
PARK J W, NAGANO S, YOON S J, et al. High contrast fluorescence patterning in cyanostilbene-based crystalline thin films:crystallization-induced mass flow via a photo-triggered phase transition [J].Adv. Mater., 2014,26(9):1354-1359.
KIM H J, WHANG D R, GIERSCHNER J, et al. High-contrast red-green-blue tricolor fluorescence switching in bicomponent molecular film [J].Angew. Chem. Int. Ed., 2015,54(14):4330-4333.
YOON S J, PARK S Y. Polymorphic and mechanochromic luminescence modulation in the highly emissive dicyanodistyrylbenzene crystal:secondary bonding interaction in molecular stacking assembly [J].J. Mater. Chem., 2011,21(23):8338-8346.
陆红波, 吴少君, 张超, 等. α-氰基取代二苯乙烯衍生物的合成与发光特性研究 [J].发光学报, 2015,36(9):983-988.
LU H B, WU S J, ZHANG C, et al. Synthesis and photoluminescence property of α-cyanostilbene derivatives molecules [J].Chin. J. Lumin., 2015,36(9):983-988. (in Chinese)
CHEN S J, LIU J Z, LIU Y, et al. An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission:extending the pH sensing range by “switch+knob” effect [J].Chem. Sci., 2012,3(6):1804-1809.
HONG Y N, MENG L M, CHEN S J, et al. Monitoring and inhibition of insulin fibrillation by a small organic fluorogen with aggregation-induced emission characteristics [J].J. Am. Chem. Soc., 2012,134(3):1680-1689.
TONG H, HONG Y N, DONG Y Q, et al. Protein detection and quantitation by tetraphenylethene-based fluorescent probes with aggregation-induced emission characteristics [J].J. Phys. Chem. B, 2007,111(40):11817-11823.
ANILKUMAR P, JAYAKANNAN M. Self-assembled cylindrical and vesicular molecular templates for polyaniline nanofibers and nanotapes [J].J. Phys. Chem. B, 2009,113(34):11614-11624.
JI W, LI L F, SONG W, et al. Enhanced Raman scattering by ZnO superstructures:synergistic effect of charge transfer and mie resonances [J].Angew. Chem. Int. Ed., 2019,58(41):14452-14456.
SONG F Y, CHENG Y H, LIU Q M, et al. Tunable circularly polarized luminescence from molecular assemblies of chiral AIEgens [J].Mater. Chem. Front., 2019,3(9):1768-1778.
白向阳, 陈诺, 檀文, 等. 席夫碱修饰的α-氰基二苯乙烯荧光液晶材料的合成与发光性质 [J].发光学报, 2016,37(5):532-537.
BAI X Y, CHEN N, TAN W, et al. Synthesis and luminescence property of schiff base modified α-cyanostilbene derivative fluorescent liquid crystals material [J].Chin. J. Lumin., 2016,37(5):532-537. (in Chinese)
AN B K, GIERSCHNER J, PARK S Y. π-conjugated cyanostilbene derivatives:a unique self-assembly motif for molecular nanostructures with enhanced emission and transport [J].Acc. Chem. Res., 2012,45(4):544-554.
0
Views
311
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution