浏览全部资源
扫码关注微信
1.华南农业大学 材料与能源学院,广东 广州 510642
2.岭南现代农业科学与技术广东省实验室,广东 广州 510642
Published:01 August 2021,
Received:07 January 2021,
Revised:23 January 2021,
移动端阅览
YA-DONG LI, XIAO-KAI XU, WEI LI, et al. Progress of Carbon Dots Regulating Plant Photosynthesis. [J]. Chinese journal of luminescence, 2021, 42(8): 1172-1181.
YA-DONG LI, XIAO-KAI XU, WEI LI, et al. Progress of Carbon Dots Regulating Plant Photosynthesis. [J]. Chinese journal of luminescence, 2021, 42(8): 1172-1181. DOI: 10.37188/CJL.20210019.
碳点(CDs)作为一种碳基纳米材料,因其粒径小、水溶性好、生物相容性高、无毒性、制备简便、原料来源广等优势,吸引了众多研究人员的关注,已在医学成像技术、环境监测、化学分析、催化剂制备、能源开发等诸多领域表现出较好的应用前景。近些年,CDs开始被应用于农业领域,尤其对植物光合作用具有优异的调控作用。一方面,CDs具有良好的光学性能,可以向叶绿体传递能量或转换光能,提高光合电子的传递速率,进而加快光合作用中光能向活跃的化学能的转化。另一方面,CDs还可以促进植物叶绿素的合成、上调光合作用相关酶的活性,提高植物对光能的捕获能力以及对CO
2
的固定速率。鉴于CDs在农业生产中的应用前景,本文从CDs的性质和植物的生理过程出发,系统地综述了CDs在调控植物光合作用中的研究进展,并对目前限制CDs应用的问题进行了总结,为其未来的发展提供了参考。
Carbon dots(CDs)
a kind of carbon nanomaterials
have various superiorities
such as small size
good water solubility
high biocompatibility
non-tixicity
simple preparation
and wide raw material sources
thereby attracting more and more attentions from researchers in medical imaging technology
environmental monitoring
chemical analysis
catalyst preparation
energy development. In recent years
CDs have begun to be applied in the field of agriculture
especially in regulating the plant photosynthesis. On the one hand
CDs
due to their good optical properties
can transfer energy or convert light to chloroplasts to improve the electron transport rate
thus accelerating the transformation of light energy to active chemical energy in photosynthesis. On the other hand
CDs can also promote the synthesis of chlorophyll and the activity of photosynthesis-related enzymes
thereby improving the ability of plants to capture light energy and CO
2
assimilation. In view of the application prospect of CDs in agriculture
this paper systematically reviewed the research progress of CDs in regulating plant photosynthesis based on the property of CDs and the physiological process of plants. Subsequently
the current problems restricting the application of CDs were summarized. This paper provides reference for the future development of CDs in agriculture.
碳点植物光合作用农业
carbon dotsplantphotosynthesisagriculture
PULIZZI F. Nano in the future of crops [J].Nat. Nanotechnol., 2019, 14(6): 507.
RAHMAN M M, NAHAR K, ALI M M, et al. Effect of long-term pesticides and chemical fertilizers application on the microbial community specifically anammox and denitrifying bacteria in rice field soil of Jhenaidah and Kushtia district, Bangladesh [J].Bull. Environ. Contam. Toxicol., 2020, 104(6): 828-833.
QIAN L L, ZHANG C D, ZUO F, et al. Effects of fertilizers and pesticides on the mineral elements used for the geographical origin traceability of rice [J].J. Food Compos. Anal., 2019, 83: 103276.
MENCHEN A, DE LAS HERAS J, ALDAY J J G. Pesticide contamination in groundwater bodies in the Júcar River European Union Pilot Basin (SE Spain) [J].Environ. Monit. Assess., 2017, 189(4): 146.
LOWRY G V, AVELLAN A, GILBERTSON L M. Opportunities and challenges for nanotechnology in the agri-tech revolution [J].Nat. Nanotechnol., 2019, 14(6): 517-522.
WU A, HAMMER G L, DOHERTY A, et al. Quantifying impacts of enhancing photosynthesis on crop yield [J].Nat. Plants, 2019, 5(4): 380-388.
JOHNSON M P. Photosynthesis [J].Essays Biochem., 2016, 60(3): 255-273.
MENON K K G, SRIVASTAVA H C. Increasing plant productivity through improved photosynthesis [J].Proc.:Plant Sci., 1984, 93(3): 359-378.
KAH M, KOOKANA R S, GOGOS A, et al. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues [J].Nat. Nanotechnol., 2018, 13(8): 677-684.
ADISA I O, PULLAGURALA V L R, PERALTA-VIDEA J R, et al. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action [J].Environ. Sci.:Nano, 2019, 6(7): 2002-2030.
KAPHLE A, NAVYA P N, UMAPATHI A, et al. Nanomaterials for agriculture, food and environment: applications, toxicity and regulation [J].Environ. Chem. Lett., 2018, 16(1): 43-58.
MILANO F, TANGORRA R R, OMAR O H, et al. Enhancing the light harvesting capability of a photosynthetic reaction center by a tailored molecular fluorophore [J].Angew. Chem. Int. Ed., 2012, 51(44): 11019-11023.
ZENG Y, ZHOU X, QI R L, et al. Photoactive conjugated polymer-based hybrid biosystems for enhancing cyanobacterial photosynthesis and regulating redox state of protein [J].Adv. Funct. Mater., 2021, 31(8): 2007814.
NABIEV I, RAKOVICH A, SUKHANOVA A, et al. Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers [J].Angew. Chem. Int. Ed., 2010, 49(40): 7217-7221.
GUST D, MOORE T A, MOORE A L. Mimicking photosynthetic solar energy transduction [J].Acc. Chem. Res., 2001, 34(1): 40-48.
BALZANI V, CREDI A, VENTURI M. Photochemical conversion of solar energy [J].ChemSusChem, 2008, 1(1-2): 26-58.
VALIZADEH A, MIKAEILI H, SAMIEI M, et al. Quantum dots: synthesis, bioapplications, and toxicity [J].Nanoscale Res. Lett., 2012, 7(1): 480-1-14.
WANG Y C, HU R, LIN G M, et al. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity [J].ACS Appl. Mater. Interfaces, 2013, 5(8): 2786-2799.
GHOSAL K, GHOSH A. Carbon dots: the next generation platform for biomedical applications [J].Mater. Sci. Eng.:C, 2019, 96: 887-903.
LI Y, XU X, WU Y, et al. A review on the effects of carbon dots in phant systems [J].Mater. Chem. Front., 2020, 4(2): 437-448.
HE J H, CHENG Y Y, ZHANG Q Q, et al. Carbon dots-based fluorescence resonance energy transfer for the prostate specific antigen (PSA) with high sensitivity [J].Talanta, 2020, 219: 121276.
CHANDRA S, PRADHAN S, MITRA S, et al. High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis [J].Nanoscale, 2014, 6(7): 3647-3655.
LI W, WU S S, ZHANG H R, et al. Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots [J].Adv. Funct. Mater., 2018, 28(44): 1804004.
GONG Y, ZHAO J. Small carbon quantum dots, large photosynthesis enhancement [J].J. Agric. Food Chem., 2018, 66(35): 9159-9161.
LI Y D, PAN X Q, XU X K, et al. Carbon dots as light converter for plant photosynthesis: augmenting light coverage and quantum yield effect [J].J. Hazard. Mater., 2020, 410: 124534.
LI H, HUANG J, LIU Y, et al. Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots [J].Nano Res., 2019, 12(7): 1585-1593.
BUDAK E, AYKUT S, PAŞAOGLU M E, et al. Microwave assisted synthesis of boron and nitrogen rich graphitic quantum dots to enhance fluorescence of photosynthetic pigments [J].Mater. Today Commun., 2020, 24: 100975.
LI H, HUANG J, LU F, et al. Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance [J].ACS Appl. Bio Mater., 2018, 1(3): 663-672.
TIAN Z, ZHANG X T, LI D, et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes [J].Adv. Opt. Mater., 2017, 5(19): 1700416-1-9.
DU J L, WANG H Y, WANG L, et al. Insight into the effect of functional groups on visible-fluorescence emissions of graphene quantum dots [J].J. Mater. Chem. C, 2016, 4(11): 2235-2242.
ZHANG Y Q, HU Y S, LIN J, et al. Excitation wavelength independence: toward low-threshold amplified spontaneous emission from carbon nanodots [J].ACS Appl. Mater. Interfaces, 2016, 8(38): 25454-25460.
SHEN Z, ZHANG C, YU X L, et al. Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection [J].J. Mater. Chem. C, 2018, 6(36): 9636-9641.
李合生. 现代植物生理学[M]. 第3版. 北京: 高等教育出版社, 2012.
LI H S. Modern Plant Physiology [M].3rd ed. Beijing: High Education Press, 2012. (in Chinese)
LI D N, LI W, ZHANG H R, et al. Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis [J].ACS Appl. Mater. Interfaces, 2020, 12(18): 21009-21019.
XU X K, MAO X P, ZHUANG J L, et al. PVA-coated fluorescent carbon dot nanocapsules as an optical amplifier for enhanced photosynthesis of lettuce [J].ACS Sustainable Chem. Eng., 2020, 8(9): 3938-3949.
PAUL M. Photosynthesis. Plastid biology, energy conversion and carbon assimilation [J].Ann. Bot., 2013, 111(3): ix.
WANG H B, ZHANG M L, SONG Y X, et al. Carbon dots promote the growth and photosynthesis of mung bean sprouts [J].Carbon, 2018, 136: 94-102.
ZHANG M L, HU L L, WANG H B, et al. One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth [J].Nanoscale, 2018, 10(26): 12734-12742.
ZHANG M L, WANG H B, SONG Y X, et al. Pristine carbon dots boost the growth of Chlorella vulgaris by enhancing photosynthesis [J].ACS Appl. Bio. Mater., 2018, 1(3): 894-902.
XUE R, FU L, DONG S S, et al. Promoting Chlorella photosynthesis and bioresource production using directionally prepared carbon dots with tunable emission [J].J. Colloid Interf. Sci., 2020, 569: 195-203.
LI Y D, GAO J M, XU X K, et al. Carbon dots as a protective agent alleviating abiotic stress on rice (Oryza sativa L.) through promoting nutrition assimilation and the defense system [J].ACS Appl. Mater. Interfaces, 2020, 12(30): 33575-33585.
XIAO L, GUO H Y, WANG S X, et al. Carbon dots alleviate the toxicity of cadmium ions (Cd2+) toward wheat seedlings [J].Environ. Sci.:Nano, 2019, 6(5): 1493-1506.
WANG H B, LI H, ZHANG M L, et al. Carbon dots enhance the nitrogen fixation activity of azotobacter chroococcum [J].ACS Appl. Mater. Interfaces, 2018, 10(19): 16308-16314.
LI H, HUANG J, SONG Y X, et al. Degradable carbon dots with broad-spectrum antibacterial activity [J].ACS Appl. Mater. Interfaces, 2018, 10(32): 26936-26946.
ZHU C, LI H, WANG H B, et al. Negatively charged carbon nanodots with bacteria resistance ability for high-performance antibiofilm formation and anticorrosion coating design [J].Small, 2019, 15(23): 1900007-1-9.
0
Views
774
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution